Lumatone mapping for 18edo: Difference between revisions
Jump to navigation
Jump to search
As the highest edo with no diatonic or antidiatonic scale at all, this is a special case that needs its own intro and expansion on how to best span it. |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 1: | Line 1: | ||
{{Lumatone mapping intro}} Only two generators work at all to produce single-period mos scales. | |||
== Wide fifth == | == Wide fifth == | ||
7 | 7\18 produces a [[5L 3s]]-based Jankó mapping. | ||
{{Lumatone EDO mapping|n=18|start=0|xstep=3|ystep=-2}} | {{Lumatone EDO mapping|n=18|start=0|xstep=3|ystep=-2}} | ||
This can be compressed down to a [[2L 1s]] mapping that is useful for maximising range. | |||
{{Lumatone EDO mapping|n=18|start=16|xstep=7|ystep=-3}} | {{Lumatone EDO mapping|n=18|start=16|xstep=7|ystep=-3}} | ||
== Flat neutral thirds == | == Flat neutral thirds == | ||
5 | 5\18 produces a [[4L 3s]]-based Jankó mapping. | ||
{{Lumatone EDO mapping|n=18|start=0|xstep=3|ystep=-1}} | {{Lumatone EDO mapping|n=18|start=0|xstep=3|ystep=-1}} | ||
This can also be compressed down to a [[3L 1s]] mapping that is useful if you want to keep octaves as close to horizontal as possible. | |||
{{Lumatone EDO mapping|n=18|start=16|xstep=5|ystep=-2}} | {{Lumatone EDO mapping|n=18|start=16|xstep=5|ystep=-2}} | ||
{{Navbox Lumatone}} | {{Navbox Lumatone}} |
Revision as of 16:47, 26 March 2025
There are many conceivable ways to map 18edo onto the onto the Lumatone keyboard. However, as both of its fifths are about as far away from just as possible, neither the sharp or the flat versions of the Standard Lumatone mapping for Pythagorean work particularly well. Only two generators work at all to produce single-period mos scales.
Wide fifth
7\18 produces a 5L 3s-based Jankó mapping.

0
3
1
4
7
10
13
17
2
5
8
11
14
17
2
0
3
6
9
12
15
0
3
6
9
12
16
1
4
7
10
13
16
1
4
7
10
13
16
1
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
5
8
11
14
17
2
5
8
11
14
17
2
5
8
15
0
3
6
9
12
15
0
3
6
9
4
7
10
13
16
1
4
7
14
17
2
5
8
3
6
This can be compressed down to a 2L 1s mapping that is useful for maximising range.

16
5
2
9
16
5
12
17
6
13
2
9
16
5
12
3
10
17
6
13
2
9
16
5
12
1
0
7
14
3
10
17
6
13
2
9
16
5
12
1
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
15
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
15
13
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
15
4
13
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
9
16
5
12
1
8
15
4
11
0
7
14
3
10
16
5
12
1
8
15
4
11
0
7
14
16
5
12
1
8
15
4
11
5
12
1
8
15
5
12
Flat neutral thirds
5\18 produces a 4L 3s-based Jankó mapping.

0
3
2
5
8
11
14
1
4
7
10
13
16
1
4
3
6
9
12
15
0
3
6
9
12
15
2
5
8
11
14
17
2
5
8
11
14
17
2
5
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
1
4
7
10
13
16
1
4
7
10
13
16
1
4
12
15
0
3
6
9
12
15
0
3
6
2
5
8
11
14
17
2
5
13
16
1
4
7
3
6
This can also be compressed down to a 3L 1s mapping that is useful if you want to keep octaves as close to horizontal as possible.

16
3
1
6
11
16
3
17
4
9
14
1
6
11
16
2
7
12
17
4
9
14
1
6
11
16
0
5
10
15
2
7
12
17
4
9
14
1
6
11
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
6
11
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
6
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
6
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
5
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
5
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
0
5
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
0
5
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
6
13
0
5
10
15
2
7
12
17
4
9
8
13
0
5
10
15
2
7
8
13
0
5
10
3
8