131edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
'''131EDT''' is the [[EDT|equal division of the third harmonic]] into 131 parts of 14.5111 [[cent|cents]] each, corresponding to 82.6953 [[edo]] (similar to every third step of [[248edo]]).


131EDT is the 16th [[The_Riemann_Zeta_Function_and_Tuning#Removing primes|no-twos zeta peak EDT]].
==Harmonics==
{{Harmonics in equal|131|3|1|intervals=prime|columns=16}}
{{Harmonics in equal|131|3|1|intervals=prime|columns=16}}


{{Stub}}
{{Stub}}

Revision as of 04:19, 21 September 2024

← 130edt 131edt 132edt →
Prime factorization 131 (prime)
Step size 14.5187 ¢ 
Octave 83\131edt (1205.06 ¢)
Consistency limit 3
Distinct consistency limit 3

131EDT is the equal division of the third harmonic into 131 parts of 14.5111 cents each, corresponding to 82.6953 edo (similar to every third step of 248edo).

131EDT is the 16th no-twos zeta peak EDT.

Harmonics

Approximation of prime harmonics in 131edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53
Error Absolute (¢) +5.06 +0.00 +1.28 -0.48 +1.04 +2.21 +2.38 -1.44 +1.73 +6.96 -6.87 +6.23 +2.74 -7.12 -1.40 -6.14
Relative (%) +34.8 +0.0 +8.8 -3.3 +7.2 +15.2 +16.4 -9.9 +11.9 +47.9 -47.3 +42.9 +18.9 -49.1 -9.7 -42.3
Steps
(reduced)
83
(83)
131
(0)
192
(61)
232
(101)
286
(24)
306
(44)
338
(76)
351
(89)
374
(112)
402
(9)
409
(16)
431
(38)
443
(50)
448
(55)
459
(66)
473
(80)
This page is a stub. You can help the Xenharmonic Wiki by expanding it.