449edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
mNo edit summary
Cleanup; clarify the title row of the rank-2 temp table
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|449}}
{{EDO intro|449}}
== Theory ==
== Theory ==
449et tempers out 26873856/26796875 and [[4375/4374]] in the 7-limit; 100663296/100656875, [[117440512/117406179]], 4302592/4296875, 825000/823543, 85937500/85766121, 160083/160000, [[41503/41472]], 539055/537824 and 805255/802816 in the 11-limit.
449edo is [[consistent]] to the [[7-odd-limit]], but the errors of [[harmonic]]s [[3/1|3]], [[5/1|5]], and [[7/1|7]] are all quite large, giving us the option of treating it as a full 7-limit temperament, or a 2.9.15.21.11.13 [[subgroup]] temperament.
===Odd harmonics===
 
Using the [[patent val]], the equal temperament [[tempering out|tempers out]] [[4375/4374]] and 26873856/26796875 in the 7-limit; [[41503/41472]], 160083/160000, 539055/537824, 805255/802816, and 825000/823543 in the 11-limit.
 
=== Odd harmonics ===
{{Harmonics in equal|449}}
{{Harmonics in equal|449}}
===Subsets and supersets===
 
=== Subsets and supersets ===
449edo is the 87th [[prime edo]]. 898edo, which doubles it, gives a good correction to the harmonic 3, 5 and 7.
449edo is the 87th [[prime edo]]. 898edo, which doubles it, gives a good correction to the harmonic 3, 5 and 7.
==Regular temperament properties==
 
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |[[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" |[[Comma list|Comma List]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" |[[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" |Optimal<br>8ve Stretch (¢)
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" |Tuning Error
! colspan="2" | Tuning Error
|-
|-
![[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
! [[TE simple badness|Relative]] (%)
|-
|-
|2.9
| 2.9
|{{monzo|-1423 449}}
| {{monzo| -1423 449 }}
|{{val|449 1423}}
| {{mapping| 449 1423 }}
| 0.1249
| 0.1249
| 0.1249
| 0.1249
Line 30: Line 36:
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(reduced)
! Generator*
! Cents<br>(reduced)
! Cents*
! Associated<br>ratio
! Associated<br>Ratio*
! Temperaments
! Temperaments
|-
|-
|1
| 1
|127\449
| 127\449
|339.421
| 339.421
|243\200
| 243\200
|[[Amity]] (7-limit)
| [[Amity]] (7-limit)
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct


== Music ==
== Music ==
*[https://www.youtube.com/watch?v=vLZuStkREoE Little Victorious Dance] by [[User:Francium|Francium]]
; [[User:Francium|Francium]]
* [https://www.youtube.com/watch?v=vLZuStkREoE ''Little Victorious Dance''] (2023)

Revision as of 07:41, 3 November 2023

← 448edo 449edo 450edo →
Prime factorization 449 (prime)
Step size 2.67261 ¢ 
Fifth 263\449 (702.895 ¢)
Semitones (A1:m2) 45:32 (120.3 ¢ : 85.52 ¢)
Dual sharp fifth 263\449 (702.895 ¢)
Dual flat fifth 262\449 (700.223 ¢)
Dual major 2nd 76\449 (203.118 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

449edo is consistent to the 7-odd-limit, but the errors of harmonics 3, 5, and 7 are all quite large, giving us the option of treating it as a full 7-limit temperament, or a 2.9.15.21.11.13 subgroup temperament.

Using the patent val, the equal temperament tempers out 4375/4374 and 26873856/26796875 in the 7-limit; 41503/41472, 160083/160000, 539055/537824, 805255/802816, and 825000/823543 in the 11-limit.

Odd harmonics

Approximation of odd harmonics in 449edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.94 +1.21 +1.33 -0.79 -0.76 -1.33 -0.52 -0.72 -0.85 -0.40 -0.21
Relative (%) +35.2 +45.4 +49.8 -29.6 -28.5 -49.7 -19.4 -27.1 -31.9 -15.1 -7.9
Steps
(reduced)
712
(263)
1043
(145)
1261
(363)
1423
(76)
1553
(206)
1661
(314)
1754
(407)
1835
(39)
1907
(111)
1972
(176)
2031
(235)

Subsets and supersets

449edo is the 87th prime edo. 898edo, which doubles it, gives a good correction to the harmonic 3, 5 and 7.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.9 [-1423 449 [449 1423]] 0.1249 0.1249 4.67

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 127\449 339.421 243\200 Amity (7-limit)

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct

Music

Francium