449edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 448edo449edo450edo →
Prime factorization 449 (prime)
Step size 2.67261¢
Fifth 263\449 (702.895¢)
Semitones (A1:m2) 45:32 (120.3¢ : 85.52¢)
Dual sharp fifth 263\449 (702.895¢)
Dual flat fifth 262\449 (700.223¢)
Dual major 2nd 76\449 (203.118¢)
Consistency limit 7
Distinct consistency limit 7

449 equal divisions of the octave (449edo), or 449-tone equal temperament (449tet), 449 equal temperament (449et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 449 equal parts of about 2.67 ¢ each.

Theory

449et tempers out 26873856/26796875 and 4375/4374 in the 7-limit; 100663296/100656875, 117440512/117406179, 4302592/4296875, 825000/823543, 85937500/85766121, 160083/160000, 41503/41472, 539055/537824 and 805255/802816 in the 11-limit.

Odd harmonics

Approximation of odd harmonics in 449edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) +0.94 +1.21 +1.33 -0.79 -0.76 -1.33 -0.52 -0.72 -0.85 -0.40 -0.21
relative (%) +35 +45 +50 -30 -28 -50 -19 -27 -32 -15 -8
Steps
(reduced)
712
(263)
1043
(145)
1261
(363)
1423
(76)
1553
(206)
1661
(314)
1754
(407)
1835
(39)
1907
(111)
1972
(176)
2031
(235)

Subsets and supersets

449edo is the 87th prime edo. 898edo, which doubles it, gives a good correction to the harmonic 3, 5 and 7.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.9 [-1423 449 449 1423] 0.1249 0.1249 4.67

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 127\449 339.421 243\200 Amity (7-limit)

Music