125edo: Difference between revisions
Jump to navigation
Jump to search
m Fill blank link, prune nonexistent category. |
Cleanup |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro|125}} | |||
== Theory == | == Theory == | ||
Line 7: | Line 6: | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{ | {{Harmonics in equal|125}} | ||
=== Miscellaneous properties === | === Miscellaneous properties === | ||
Line 14: | Line 13: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning Error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 62: | Line 61: | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per | ! Periods<br>per 8ve | ||
! Generator<br>( | ! Generator<br>(Reduced) | ||
! Cents<br>( | ! Cents<br>(Reduced) | ||
! Associated<br> | ! Associated<br>Ratio | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 78: | Line 77: | ||
| 115.2 | | 115.2 | ||
| 77/72 | | 77/72 | ||
| [[ | | [[Semigamera]] | ||
|- | |- | ||
| 1 | | 1 | ||
Line 84: | Line 83: | ||
| 182.4 | | 182.4 | ||
| 10/9 | | 10/9 | ||
| [[ | | [[Mitonic]] | ||
|- | |- | ||
| 1 | | 1 | ||
Line 96: | Line 95: | ||
| 316.8 | | 316.8 | ||
| 6/5 | | 6/5 | ||
| [[ | | [[Catakleismic]] | ||
|- | |- | ||
| 1 | | 1 | ||
Line 123: | Line 122: | ||
|} | |} | ||
[[Category:Catakleismic]] | [[Category:Catakleismic]] |
Revision as of 08:53, 3 October 2023
← 124edo | 125edo | 126edo → |
Theory
125edo defines the optimal patent val for 7- and 11-limit slender temperament. It tempers out 15625/15552 in the 5-limit; 225/224 and 4375/4374 in the 7-limit; 385/384 and 540/539 in the 11-limit. In the 13-limit the 125f val ⟨125 198 290 351 432 462] does a better job, where it tempers out 169/168, 325/324, 351/350, 625/624 and 676/675, providing a good tuning for catakleismic.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -1.16 | -2.31 | +0.77 | -4.12 | +4.27 | +0.64 | +0.09 | -4.27 | -2.38 | -2.64 |
Relative (%) | +0.0 | -12.0 | -24.1 | +8.1 | -42.9 | +44.5 | +6.7 | +0.9 | -44.5 | -24.8 | -27.5 | |
Steps (reduced) |
125 (0) |
198 (73) |
290 (40) |
351 (101) |
432 (57) |
463 (88) |
511 (11) |
531 (31) |
565 (65) |
607 (107) |
619 (119) |
Miscellaneous properties
125 is 5 cubed. Being the cube closest to division of the octave by the Germanic long hundred, 125edo has a unit step which is the cubic (fine) relative cent of 1edo.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-198 125⟩ | [⟨125 198]] | +0.364 | 0.364 | 3.80 |
2.3.5 | 15625/15552, 17433922005/17179869184 | [⟨125 198 290]] | +0.575 | 0.421 | 4.39 |
2.3.5.7 | 225/224, 4375/4374, 589824/588245 | [⟨125 198 290 351]] | +0.362 | 0.519 | 5.40 |
2.3.5.7.11 | 225/224, 385/384, 1331/1323, 4375/4374 | [⟨125 198 290 351 432]] | +0.528 | 0.570 | 5.94 |
2.3.5.7.11.13 | 169/168, 225/224, 325/324, 385/384, 1331/1323 | [⟨125 198 290 351 432 462]] (125f) | +0.680 | 0.622 | 6.47 |
Rank-2 temperaments
Periods per 8ve |
Generator (Reduced) |
Cents (Reduced) |
Associated Ratio |
Temperaments |
---|---|---|---|---|
1 | 4\125 | 38.4 | 49/48 | Slender |
1 | 12\125 | 115.2 | 77/72 | Semigamera |
1 | 19\125 | 182.4 | 10/9 | Mitonic |
1 | 24\125 | 230.4 | 8/7 | Gamera |
1 | 33\125 | 316.8 | 6/5 | Catakleismic |
1 | 52\125 | 499.2 | 4/3 | Gracecordial |
1 | 61\125 | 585.6 | 7/5 | Merman |
5 | 26\125 (1\125) |
249.6 (9.6) |
81/70 (176/175) |
Hemipental |
5 | 52\125 (2\125) |
499.2 (19.2) |
4/3 (81/80) |
Pental |