Lumatone mapping for 34edo: Difference between revisions
Jump to navigation
Jump to search
General improvement of explanation and referencing |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 1: | Line 1: | ||
34edo is an interesting case for [[Lumatone]] mappings, since ([[Lumatone mapping for 24edo|like 24edo]]), it is not generated by fifths and octaves, so the [[Standard Lumatone mapping for Pythagorean]] only reaches [[17edo]] intervals unless you use the b val instead, which generates [[mabila]]. | 34edo is an interesting case for [[Lumatone]] mappings, since ([[Lumatone mapping for 24edo|like 24edo]]), it is not generated by fifths and octaves, so the [[Standard Lumatone mapping for Pythagorean]] only reaches [[17edo]] intervals unless you use the b val instead, which generates [[mabila]]. | ||
{{Lumatone EDO mapping|n=34|start=14|xstep=4|ystep=3}} | {{Lumatone EDO mapping|n=34|start=14|xstep=4|ystep=3}} | ||
However, this puts the perfect 5th in awkward places. The [[Tetracot]] mapping is probably a better option if you want a heptatonic scale that makes finding intervals relatively easy, since the perfect 5th is in a straight line from the root, while single steps are neatly mapped to the vertical axis. | However, this puts the perfect 5th in awkward places. The [[Tetracot]] mapping is probably a better option if you want a heptatonic scale that makes finding intervals relatively easy, since the perfect 5th is in a straight line from the root, while single steps are neatly mapped to the vertical axis. | ||
{{Lumatone EDO mapping|n=34|start=25|xstep=5|ystep=-1}} | {{Lumatone EDO mapping|n=34|start=25|xstep=5|ystep=-1}} | ||
If you want greater range you can slice the perfect 4th in two and use the [[immunity]] mapping: | |||
{{Lumatone EDO mapping|n=34|start=19|xstep=7|ystep=-1}} | {{Lumatone EDO mapping|n=34|start=19|xstep=7|ystep=-1}} | ||
Or the [[kleismic]] mapping: | |||
{{Lumatone EDO mapping|n=34|start=20|xstep=9|ystep=-1}} | |||
[[Category:Lumatone mappings]] [[Category:34edo]] | [[Category:Lumatone mappings]] [[Category:34edo]] |
Revision as of 18:38, 13 August 2024
34edo is an interesting case for Lumatone mappings, since (like 24edo), it is not generated by fifths and octaves, so the Standard Lumatone mapping for Pythagorean only reaches 17edo intervals unless you use the b val instead, which generates mabila.

14
18
21
25
29
33
3
24
28
32
2
6
10
14
18
31
1
5
9
13
17
21
25
29
33
3
0
4
8
12
16
20
24
28
32
2
6
10
14
18
7
11
15
19
23
27
31
1
5
9
13
17
21
25
29
33
3
10
14
18
22
26
30
0
4
8
12
16
20
24
28
32
2
6
10
14
18
17
21
25
29
33
3
7
11
15
19
23
27
31
1
5
9
13
17
21
25
29
33
3
20
24
28
32
2
6
10
14
18
22
26
30
0
4
8
12
16
20
24
28
32
2
6
10
14
18
31
1
5
9
13
17
21
25
29
33
3
7
11
15
19
23
27
31
1
5
9
13
17
21
25
29
33
3
12
16
20
24
28
32
2
6
10
14
18
22
26
30
0
4
8
12
16
20
24
28
32
2
6
10
31
1
5
9
13
17
21
25
29
33
3
7
11
15
19
23
27
31
1
5
9
13
17
12
16
20
24
28
32
2
6
10
14
18
22
26
30
0
4
8
12
16
20
31
1
5
9
13
17
21
25
29
33
3
7
11
15
19
23
27
12
16
20
24
28
32
2
6
10
14
18
22
26
30
31
1
5
9
13
17
21
25
29
33
3
12
16
20
24
28
32
2
6
31
1
5
9
13
12
16
However, this puts the perfect 5th in awkward places. The Tetracot mapping is probably a better option if you want a heptatonic scale that makes finding intervals relatively easy, since the perfect 5th is in a straight line from the root, while single steps are neatly mapped to the vertical axis.

25
30
29
0
5
10
15
28
33
4
9
14
19
24
29
32
3
8
13
18
23
28
33
4
9
14
31
2
7
12
17
22
27
32
3
8
13
18
23
28
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
16
21
26
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
20
25
30
1
6
11
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
24
29
0
5
10
15
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
23
28
33
4
9
14
19
25
30
1
6
11
16
21
26
31
2
7
12
17
22
27
32
3
8
13
18
10
15
20
25
30
1
6
11
16
21
26
31
2
7
12
17
22
24
29
0
5
10
15
20
25
30
1
6
11
16
21
9
14
19
24
29
0
5
10
15
20
25
23
28
33
4
9
14
19
24
8
13
18
23
28
22
27
If you want greater range you can slice the perfect 4th in two and use the immunity mapping:

19
26
25
32
5
12
19
24
31
4
11
18
25
32
5
30
3
10
17
24
31
4
11
18
25
32
29
2
9
16
23
30
3
10
17
24
31
4
11
18
1
8
15
22
29
2
9
16
23
30
3
10
17
24
31
4
11
0
7
14
21
28
1
8
15
22
29
2
9
16
23
30
3
10
17
24
31
6
13
20
27
0
7
14
21
28
1
8
15
22
29
2
9
16
23
30
3
10
17
24
5
12
19
26
33
6
13
20
27
0
7
14
21
28
1
8
15
22
29
2
9
16
23
30
3
10
18
25
32
5
12
19
26
33
6
13
20
27
0
7
14
21
28
1
8
15
22
29
2
9
16
23
30
3
4
11
18
25
32
5
12
19
26
33
6
13
20
27
0
7
14
21
28
1
8
15
22
29
2
9
31
4
11
18
25
32
5
12
19
26
33
6
13
20
27
0
7
14
21
28
1
8
15
17
24
31
4
11
18
25
32
5
12
19
26
33
6
13
20
27
0
7
14
10
17
24
31
4
11
18
25
32
5
12
19
26
33
6
13
20
30
3
10
17
24
31
4
11
18
25
32
5
12
19
23
30
3
10
17
24
31
4
11
18
25
9
16
23
30
3
10
17
24
2
9
16
23
30
22
29
Or the kleismic mapping:

20
29
28
3
12
21
30
27
2
11
20
29
4
13
22
1
10
19
28
3
12
21
30
5
14
23
0
9
18
27
2
11
20
29
4
13
22
31
6
15
8
17
26
1
10
19
28
3
12
21
30
5
14
23
32
7
16
7
16
25
0
9
18
27
2
11
20
29
4
13
22
31
6
15
24
33
8
15
24
33
8
17
26
1
10
19
28
3
12
21
30
5
14
23
32
7
16
25
0
9
14
23
32
7
16
25
0
9
18
27
2
11
20
29
4
13
22
31
6
15
24
33
8
17
26
1
31
6
15
24
33
8
17
26
1
10
19
28
3
12
21
30
5
14
23
32
7
16
25
0
9
18
27
2
23
32
7
16
25
0
9
18
27
2
11
20
29
4
13
22
31
6
15
24
33
8
17
26
1
10
24
33
8
17
26
1
10
19
28
3
12
21
30
5
14
23
32
7
16
25
0
9
18
16
25
0
9
18
27
2
11
20
29
4
13
22
31
6
15
24
33
8
17
17
26
1
10
19
28
3
12
21
30
5
14
23
32
7
16
25
9
18
27
2
11
20
29
4
13
22
31
6
15
24
10
19
28
3
12
21
30
5
14
23
32
2
11
20
29
4
13
22
31
3
12
21
30
5
29
4