Jubilismic clan: Difference between revisions
m Update the keys |
Move astrology here since it's a strong extension |
||
Line 21: | Line 21: | ||
Lemba finds the perfect fifth three steps away by tempering out [[1029/1024]]. Astrology, five steps away by tempering out [[3125/3072]]. Decimal, two steps away by tempering out [[25/24]] and [[49/48]]. Pajara slices the ~7/4 into two. Injera slices the ~5/1 into four. Hedgehog slices the ~7/1 into five. | Lemba finds the perfect fifth three steps away by tempering out [[1029/1024]]. Astrology, five steps away by tempering out [[3125/3072]]. Decimal, two steps away by tempering out [[25/24]] and [[49/48]]. Pajara slices the ~7/4 into two. Injera slices the ~5/1 into four. Hedgehog slices the ~7/1 into five. | ||
Lemba, doublewide, and diminished are discussed below; others in the clan are | Lemba, astrology, doublewide, and diminished are discussed below; others in the clan are | ||
* [[Pajara]] → [[Diaschismic family #Pajara|Diaschismic family]] | * [[Pajara]] → [[Diaschismic family #Pajara|Diaschismic family]] | ||
* [[Decimal]] → [[Dicot family #Decimal|Dicot family]] | * [[Decimal]] → [[Dicot family #Decimal|Dicot family]] | ||
Line 30: | Line 30: | ||
* [[Dubbla]] → [[Wesley family #Dubbla|Wesley family]] | * [[Dubbla]] → [[Wesley family #Dubbla|Wesley family]] | ||
* [[Hexe]] → [[Augmented family #Hexe|Augmented family]] | * [[Hexe]] → [[Augmented family #Hexe|Augmented family]] | ||
which are discussed elsewhere. | which are discussed elsewhere. | ||
Line 76: | Line 75: | ||
Badness: 0.025477 | Badness: 0.025477 | ||
== Astrology == | |||
{{See also| Magic family }} | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 50/49, 3125/3072 | |||
[[Mapping]]: [{{val| 2 0 4 5 }}, {{val| 0 5 1 1 }}] | |||
Mapping geenerators: ~7/5, ~5/4 | |||
{{Multival|legend=1| 10 2 2 -20 -25 -1 }} | |||
[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~5/4 = 380.578 | |||
{{Val list|legend=1| 6, 16, 22, 60d, 82d }} | |||
[[Badness]]: 0.082673 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 50/49, 121/120, 176/175 | |||
Mapping: [{{val| 2 0 4 5 5 }}, {{val| 0 5 1 1 3 }}] | |||
Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 380.530 | |||
Optimal GPV sequence: {{Val list| 6, 16, 22, 60de, 82de }} | |||
Badness: 0.039151 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 50/49, 65/64, 78/77, 121/120 | |||
Mapping: [{{val| 2 0 4 5 5 8 }}, {{val| 0 5 1 1 3 -1 }}] | |||
Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 379.787 | |||
Optimal GPV sequence: {{Val list| 6, 16, 22, 38f }} | |||
Badness: 0.034376 | |||
; Music | |||
* [https://soundcloud.com/joelgranttaylor/astrology-percussion-quintet ''Astrology Percussion Quintet No 1'']{{dead link}} [http://micro.soonlabel.com/gene_ward_smith/Others/Taylor/AstrologyPercQuintet1_c.mp3 play]{{dead link}} by [[Joel Taylor]] | |||
==== Horoscope ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 50/49, 66/65, 105/104, 121/120 | |||
Mapping: [{{val| 2 0 4 5 5 3 }}, {{val| 0 5 1 1 3 7 }}] | |||
POTE generator: ~5/4 = 379.837 | |||
Optimal GPV sequence: {{Val list| 16, 22f, 38 }} | |||
Badness: 0.035284 | |||
== Diminished == | == Diminished == |
Revision as of 09:57, 13 March 2023
The jubilismic clan tempers out the jubilisma, 50/49, which means 7/5 and 10/7 are identified and the octave is divided in two.
Jubilic
The head of this clan, jubilic, is generated by ~5/4. That and a semioctave gives ~7/4.
Subgroup: 2.5.7
Comma list: 50/49
Sval mapping: [⟨2 0 1], ⟨0 1 1]]
Sval mapping generators: ~7/5, ~5
Gencom mapping: [⟨2 0 0 1], ⟨0 0 1 1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 380.840
Overview to extensions
Lemba finds the perfect fifth three steps away by tempering out 1029/1024. Astrology, five steps away by tempering out 3125/3072. Decimal, two steps away by tempering out 25/24 and 49/48. Pajara slices the ~7/4 into two. Injera slices the ~5/1 into four. Hedgehog slices the ~7/1 into five.
Lemba, astrology, doublewide, and diminished are discussed below; others in the clan are
- Pajara → Diaschismic family
- Decimal → Dicot family
- Injera → Meantone family
- Octokaidecal → Trienstonic clan
- Hedgehog → Porcupine family
- Bipelog → Pelogic family
- Dubbla → Wesley family
- Hexe → Augmented family
which are discussed elsewhere.
Lemba
Subgroup: 2.3.5.7
Comma list: 50/49, 525/512
Mapping: [⟨2 2 5 6], ⟨0 3 -1 -1]]
Mapping generators: ~7/5, ~8/7
Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 232.089
Badness: 0.062208
11-limit
Subgroup: 2.3.5.7.11
Comma list: 45/44, 50/49, 385/384
Mapping: [⟨2 2 5 6 5], ⟨0 3 -1 -1 5]]
Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.974
Optimal GPV sequence: Template:Val list
Badness: 0.041563
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 50/49, 65/64, 78/77
Mapping: [⟨2 2 5 6 5 7], ⟨0 3 -1 -1 5 1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.966
Optimal GPV sequence: Template:Val list
Badness: 0.025477
Astrology
Subgroup: 2.3.5.7
Comma list: 50/49, 3125/3072
Mapping: [⟨2 0 4 5], ⟨0 5 1 1]]
Mapping geenerators: ~7/5, ~5/4
Wedgie: ⟨⟨ 10 2 2 -20 -25 -1 ]]
Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 380.578
Badness: 0.082673
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 121/120, 176/175
Mapping: [⟨2 0 4 5 5], ⟨0 5 1 1 3]]
Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 380.530
Optimal GPV sequence: Template:Val list
Badness: 0.039151
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 65/64, 78/77, 121/120
Mapping: [⟨2 0 4 5 5 8], ⟨0 5 1 1 3 -1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 379.787
Optimal GPV sequence: Template:Val list
Badness: 0.034376
- Music
Horoscope
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 66/65, 105/104, 121/120
Mapping: [⟨2 0 4 5 5 3], ⟨0 5 1 1 3 7]]
POTE generator: ~5/4 = 379.837
Optimal GPV sequence: Template:Val list
Badness: 0.035284
Diminished
Subgroup: 2.3.5.7
Comma list: 36/35, 50/49
Mapping: [⟨4 0 3 5], ⟨0 1 1 1]]
Mapping generators: ~6/5, ~3
Optimal tuning (POTE): ~6/5 = 1\4, ~3/2 = 699.523
Badness: 0.022401
Scales: diminished12
11-limit
Subgroup: 2.3.5.7.11
Comma list: 36/35, 50/49, 56/55
Mapping: [⟨4 0 3 5 14], ⟨0 1 1 1 0]]
Optimal tuning (POTE): ~6/5 = 1\4, ~3/2 = 709.109
Optimal GPV sequence: Template:Val list
Badness: 0.022132
Scales: diminished12
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 36/35, 40/39, 50/49, 66/65
Mapping: [⟨4 0 3 5 14 15], ⟨0 1 1 1 0 0]]
Optimal tuning (POTE): ~6/5 = 1\4, ~3/2 = 713.773
Optimal GPV sequence: Template:Val list
Badness: 0.019509
Scales: diminished12
Demolished
Subgroup: 2.3.5.7.11
Comma list: 36/35, 45/44, 50/49
Mapping: [⟨4 0 3 5 -5], ⟨0 1 1 1 3]]
Optimal tuning (POTE): ~6/5 = 1\4, ~3/2 = 689.881
Optimal GPV sequence: Template:Val list
Badness: 0.026574
Cohedim
This temperament has been documented in Graham Breed's temperament finder as hemidim, the same name as 11-limit 4e&24 and 13-limit 4ef&24. For 11-limit 8bce&12 temperament, cohedim arguably makes more sense.
Subgroup: 2.3.5.7.11
Comma list: 36/35, 50/49, 125/121
Mapping: [⟨4 1 4 6 6], ⟨0 2 2 2 3]]
Mapping generators: ~6/5, ~11/7
Optimal tuning (POTE): ~6/5 = 1\4, ~12/11 = 101.679
Optimal GPV sequence: Template:Val list
Badness: 0.054965
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 36/35, 50/49, 66/65, 125/121
Mapping: [⟨4 1 4 6 6 7], ⟨0 2 2 2 3 3]]
Optimal tuning (POTE): ~6/5 = 1\4, ~12/11 = 102.299
Optimal GPV sequence: Template:Val list
Badness: 0.041707
Doublewide
Subgroup: 2.3.5.7
Comma list: 50/49, 875/864
Mapping: [⟨2 1 3 4], ⟨0 4 3 3]]
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 325.719
Badness: 0.043462
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 99/98, 875/864
Mapping: [⟨2 1 3 4 8], ⟨0 4 3 3 -2]]
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 325.545
Optimal GPV sequence: Template:Val list
Badness: 0.032058
Fleetwood
Subgroup: 2.3.5.7.11
Comma list: 50/49, 55/54, 176/175
Mapping: [⟨2 1 3 4 2], ⟨0 4 3 3 9]]
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.038
Optimal GPV sequence: Template:Val list
Badness: 0.035202
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 55/54, 65/63, 176/175
Mapping: [⟨2 1 3 4 2 3], ⟨0 4 3 3 9 8]]
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.841
Optimal GPV sequence: Template:Val list
Badness: 0.031835
Cavalier
Subgroup: 2.3.5.7.11
Comma list: 45/44, 50/49, 875/864
Mapping: [⟨2 1 3 4 1], ⟨0 4 3 3 11]]
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.427
Optimal GPV sequence: Template:Val list
Badness: 0.052899
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 50/49, 78/77, 325/324
Mapping: [⟨2 1 3 4 1 2], ⟨0 4 3 3 11 10]]
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.396
Optimal GPV sequence: Template:Val list
Badness: 0.035040
Elvis
- For the 5-limit version of this temperament, see High badness temperaments #Elvis.
Subgroup: 2.3.5.7
Comma list: 50/49, 8505/8192
Mapping: [⟨2 1 10 11], ⟨0 2 -5 -5]]
Wedgie: ⟨⟨ 4 -10 -10 -25 -27 5 ]]
Optimal tuning (POTE): ~7/5 = 1\2, ~45/32 = 553.721
Badness: 0.141473
11-limit
Subgroup: 2.3.5.7.11
Comma list: 45/44, 50/49, 1344/1331
Mapping: [⟨2 1 10 11 8], ⟨0 2 -5 -5 -1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.882
Optimal GPV sequence: Template:Val list
Badness: 0.063212
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 50/49, 78/77, 1053/1024
Mapping: [⟨2 1 10 11 8 16], ⟨0 2 -5 -5 -1 -8]]
Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.892
Optimal GPV sequence: Template:Val list
Badness: 0.043997
Crepuscular
Subgroup: 2.3.5.7
Comma list: 50/49, 4375/4374
Mapping: [⟨2 2 3 4], ⟨0 5 7 7]]
Wedgie: ⟨⟨ 10 14 14 -1 -6 -7 ]]
Optimal tuning (POTE): ~7/5 = 1\2, ~27/25 = 140.349
Badness: 0.086669
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 99/98, 864/847
Mapping: [⟨2 2 3 4 6], ⟨0 5 7 7 4]]
Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.587
Optimal GPV sequence: Template:Val list
Badness: 0.040758
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 78/77, 99/98, 144/143
Mapping: [⟨2 2 3 4 6 6], ⟨0 5 7 7 4 6]]
Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.554
Optimal GPV sequence: Template:Val list
Badness: 0.024368
Comic
- For the 5-limit version of this temperament, see High badness temperaments #Comic.
Subgroup: 2.3.5.7
Comma list: 50/49, 2240/2187
Mapping: [⟨2 1 -3 -2], ⟨0 2 7 7]]
Wedgie: ⟨⟨ 4 14 14 13 11 -7 ]]
Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 54.699
Badness: 0.084395
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 99/98, 2662/2625
Mapping: [⟨2 1 -3 -2 -4], ⟨0 2 7 7 10]]
Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 55.184
Optimal GPV sequence: Template:Val list
Badness: 0.045052
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 65/63, 99/98, 968/945
Mapping: [⟨2 1 -3 -2 -4 3], ⟨0 2 7 7 10 4]]
Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 54.435
Optimal GPV sequence: Template:Val list
Badness: 0.041470
Bipyth
Subgroup: 2.3.5.7
Comma list: 50/49, 20480/19683
Mapping: [⟨2 0 -24 -23], ⟨0 1 9 9]]
Wedgie: ⟨⟨ 2 18 18 24 23 -9 ]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 709.437
Badness: 0.165033
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 121/120, 896/891
Mapping: [⟨2 0 -24 -23 -9], ⟨0 1 9 9 5]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 709.310
Optimal GPV sequence: Template:Val list
Badness: 0.070910
Sedecic
Subgroup: 2.3.5.7
Comma list: 50/49, 546875/524288
Mapping: [⟨16 0 37 45], ⟨0 1 0 0]]
Wedgie: ⟨⟨ 16 0 0 -37 -45 0 ]]
Optimal tuning (POTE): ~128/125 = 1\16, ~3/2 = 700.554
Badness: 0.265972
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 385/384, 1331/1323
Mapping: [⟨16 0 37 45 30], ⟨0 1 0 0 1]]
Optimal tuning (POTE): ~22/21 = 1\16, ~3/2 = 700.331
Optimal GPV sequence: Template:Val list
Badness: 0.092774
Duodecim
Subgroup: 2.3.5.7.11
Comma list: 36/35, 50/49, 64/63
Mapping: [⟨12 19 28 34 0], ⟨0 0 0 0 1]]
Optimal tuning (POTE): ~16/15 = 1\12, ~11/8 = 565.023
Badness: 0.030536
Vigintiduo
Subgroup: 2.3.5.7.11
Comma list: 50/49, 64/63, 245/243
Mapping: [⟨22 35 51 62 0], ⟨0 0 0 0 1]]
Optimal tuning (POTE): ~36/35 = 1\22, ~11/8 = 557.563
Badness: 0.048372
Vigin
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 55/54, 64/63, 99/98
Mapping: [⟨22 35 51 62 76 0], ⟨0 0 0 0 0 1]]
Optimal tuning (POTE): ~33/32 = 1\22, ~13/8 = 844.624
Badness: 0.029849