Jubilismic clan: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Overview to extensions: expand and improve linking
m Update the keys
Line 2: Line 2:


== Jubilic ==
== Jubilic ==
The head of this clan, jubilic, is generated by an approximate [[5/4]]. That and a semioctave gives [[7/4]].  
The head of this clan, jubilic, is generated by [[~]][[5/4]]. That and a semioctave gives ~[[7/4]].  


[[Subgroup]]: 2.5.7
[[Subgroup]]: 2.5.7
Line 14: Line 14:
[[Gencom]] [[mapping]]: [{{val| 2 0 0 1 }}, {{val| 0 0 1 1 }}]
[[Gencom]] [[mapping]]: [{{val| 2 0 0 1 }}, {{val| 0 0 1 1 }}]


[[Optimal tuning]] ([[POTE]]) ~5/4 = 380.840
[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~5/4 = 380.840


{{Val list|legend=1| 2, 4, 6, 16, 22, 60d, 82d, 104dd }}
{{Val list|legend=1| 2, 4, 6, 16, 22, 60d, 82d, 104dd }}
Line 37: Line 37:
{{Main| Lemba }}
{{Main| Lemba }}


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 50/49, 525/512
[[Comma list]]: 50/49, 525/512
Line 45: Line 45:
Mapping generators: ~7/5, ~8/7
Mapping generators: ~7/5, ~8/7


[[POTE generator]]: ~8/7 = 232.089
[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~8/7 = 232.089


{{Val list|legend=1| 10, 16, 26, 62c }}
{{Val list|legend=1| 10, 16, 26, 62c }}
Line 58: Line 58:
Mapping: [{{val| 2 2 5 6 5 }}, {{val| 0 3 -1 -1 5 }}]
Mapping: [{{val| 2 2 5 6 5 }}, {{val| 0 3 -1 -1 5 }}]


POTE generator: ~8/7 = 230.974
Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.974


Optimal GPV sequence: {{Val list| 10, 16, 26 }}
Optimal GPV sequence: {{Val list| 10, 16, 26 }}
Line 71: Line 71:
Mapping: [{{val| 2 2 5 6 5 7 }}, {{val| 0 3 -1 -1 5 1 }}]
Mapping: [{{val| 2 2 5 6 5 7 }}, {{val| 0 3 -1 -1 5 1 }}]


POTE generator: ~8/7 = 230.966
Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.966


Optimal GPV sequence: {{Val list| 10, 16, 26 }}
Optimal GPV sequence: {{Val list| 10, 16, 26 }}
Line 79: Line 79:
== Diminished ==
== Diminished ==
<div style="float: right">[[:de:Verminderte Temperaturen|Deutsch]]</div>
<div style="float: right">[[:de:Verminderte Temperaturen|Deutsch]]</div>
{{see also|Dimipent family #Diminished}}
{{See also| Dimipent family #Diminished }}


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 36/35, 50/49
[[Comma list]]: 36/35, 50/49
Line 89: Line 89:
Mapping generators: ~6/5, ~3
Mapping generators: ~6/5, ~3


[[POTE generator]]: ~3/2 = 699.523
[[Optimal tuning]] ([[POTE]]): ~6/5 = 1\4, ~3/2 = 699.523


{{Val list|legend=1| 4, 8d, 12 }}
{{Val list|legend=1| 4, 8d, 12 }}
Line 104: Line 104:
Mapping: [{{val| 4 0 3 5 14 }}, {{val| 0 1 1 1 0 }}]
Mapping: [{{val| 4 0 3 5 14 }}, {{val| 0 1 1 1 0 }}]


Mapping generators: ~6/5, ~3
Optimal tuning (POTE): ~6/5 = 1\4, ~3/2 = 709.109
 
POTE generator: ~3/2 = 709.109


Optimal GPV sequence: {{Val list| 4, 8d, 12, 32cddee, 44cddeee }}
Optimal GPV sequence: {{Val list| 4, 8d, 12, 32cddee, 44cddeee }}
Line 121: Line 119:
Mapping: [{{val| 4 0 3 5 14 15 }}, {{val| 0 1 1 1 0 0 }}]
Mapping: [{{val| 4 0 3 5 14 15 }}, {{val| 0 1 1 1 0 0 }}]


Mapping generators: ~6/5, ~3
Optimal tuning (POTE): ~6/5 = 1\4, ~3/2 = 713.773
 
POTE generator: ~3/2 = 713.773


Optimal GPV sequence: {{Val list| 4, 8d, 12f, 20cdef }}
Optimal GPV sequence: {{Val list| 4, 8d, 12f, 20cdef }}
Line 138: Line 134:
Mapping: [{{val| 4 0 3 5 -5 }}, {{val| 0 1 1 1 3 }}]
Mapping: [{{val| 4 0 3 5 -5 }}, {{val| 0 1 1 1 3 }}]


Mapping generators: ~6/5, ~3
Optimal tuning (POTE): ~6/5 = 1\4, ~3/2 = 689.881
 
POTE generator: ~3/2 = 689.881


Optimal GPV sequence: {{Val list| 12, 28, 40de }}
Optimal GPV sequence: {{Val list| 12, 28, 40de }}
Line 157: Line 151:
Mapping generators: ~6/5, ~11/7
Mapping generators: ~6/5, ~11/7


POTE generator: ~12/11 = 101.679
Optimal tuning (POTE): ~6/5 = 1\4, ~12/11 = 101.679


Optimal GPV sequence: {{Val list| 8bce, 12 }}
Optimal GPV sequence: {{Val list| 8bce, 12 }}
Line 170: Line 164:
Mapping: [{{val| 4 1 4 6 6 7 }}, {{val| 0 2 2 2 3 3 }}]
Mapping: [{{val| 4 1 4 6 6 7 }}, {{val| 0 2 2 2 3 3 }}]


POTE generator: ~12/11 = 102.299
Optimal tuning (POTE): ~6/5 = 1\4, ~12/11 = 102.299


Optimal GPV sequence: {{Val list| 8bcef, 12f }}
Optimal GPV sequence: {{Val list| 8bcef, 12f }}
Line 177: Line 171:


== Doublewide ==
== Doublewide ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 50/49, 875/864
[[Comma list]]: 50/49, 875/864
Line 183: Line 177:
[[Mapping]]: [{{val| 2 1 3 4 }}, {{val| 0 4 3 3 }}]
[[Mapping]]: [{{val| 2 1 3 4 }}, {{val| 0 4 3 3 }}]


[[POTE generator]]: ~6/5 = 325.719
[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~6/5 = 325.719


{{Val list|legend=1| 4, 14bd, 18, 22, 48, 70c }}
{{Val list|legend=1| 4, 14bd, 18, 22, 48, 70c }}
Line 196: Line 190:
Mapping: [{{val| 2 1 3 4 8 }}, {{val| 0 4 3 3 -2 }}]
Mapping: [{{val| 2 1 3 4 8 }}, {{val| 0 4 3 3 -2 }}]


POTE generator: ~6/5 = 325.545
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 325.545


Optimal GPV sequence: {{Val list| 4, 14bd, 18, 22, 48, 70c, 118cd }}
Optimal GPV sequence: {{Val list| 4, 14bd, 18, 22, 48, 70c, 118cd }}
Line 209: Line 203:
Mapping: [{{val| 2 1 3 4 2 }}, {{val| 0 4 3 3 9 }}]
Mapping: [{{val| 2 1 3 4 2 }}, {{val| 0 4 3 3 9 }}]


POTE generator: ~6/5 = 327.038
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.038


Optimal GPV sequence: {{Val list| 4e, 18e, 22 }}
Optimal GPV sequence: {{Val list| 4e, 18e, 22 }}
Line 222: Line 216:
Mapping: [{{val| 2 1 3 4 2 3 }}, {{val| 0 4 3 3 9 8 }}]
Mapping: [{{val| 2 1 3 4 2 3 }}, {{val| 0 4 3 3 9 8 }}]


POTE generator: ~6/5 = 327.841
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.841


Optimal GPV sequence: {{Val list| 4ef, 18e, 22, 84bddf }}
Optimal GPV sequence: {{Val list| 4ef, 18e, 22, 84bddf }}
Line 235: Line 229:
Mapping: [{{val| 2 1 3 4 1 }}, {{val| 0 4 3 3 11 }}]
Mapping: [{{val| 2 1 3 4 1 }}, {{val| 0 4 3 3 11 }}]


POTE generator: ~6/5 = 323.427
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.427


Optimal GPV sequence: {{Val list| 22e, 26 }}
Optimal GPV sequence: {{Val list| 22e, 26 }}
Line 248: Line 242:
Mapping: [{{val| 2 1 3 4 1 2 }}, {{val| 0 4 3 3 11 10 }}]
Mapping: [{{val| 2 1 3 4 1 2 }}, {{val| 0 4 3 3 11 10 }}]


POTE generator: ~6/5 = 323.396
Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.396


Optimal GPV sequence: {{Val list| 22ef, 26 }}
Optimal GPV sequence: {{Val list| 22ef, 26 }}
Line 257: Line 251:
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Elvis]].''
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Elvis]].''


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 50/49, 8505/8192
[[Comma list]]: 50/49, 8505/8192
Line 265: Line 259:
{{Multival|legend=1| 4 -10 -10 -25 -27 5 }}
{{Multival|legend=1| 4 -10 -10 -25 -27 5 }}


[[POTE generator]]: ~45/32 = 553.721
[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~45/32 = 553.721


{{Val list|legend=1| 2, 24c, 26 }}
{{Val list|legend=1| 2, 24c, 26 }}
Line 278: Line 272:
Mapping: [{{val| 2 1 10 11 8 }}, {{val| 0 2 -5 -5 -1 }}]
Mapping: [{{val| 2 1 10 11 8 }}, {{val| 0 2 -5 -5 -1 }}]


POTE generator: ~11/8 = 553.882
Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.882


Optimal GPV sequence: {{Val list| 2, 24c, 26 }}
Optimal GPV sequence: {{Val list| 2, 24c, 26 }}
Line 291: Line 285:
Mapping: [{{val| 2 1 10 11 8 16 }}, {{val| 0 2 -5 -5 -1 -8 }}]
Mapping: [{{val| 2 1 10 11 8 16 }}, {{val| 0 2 -5 -5 -1 -8 }}]


POTE generator: ~11/8 = 553.892
Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.892


Optimal GPV sequence: {{Val list| 2f, 24cf, 26 }}
Optimal GPV sequence: {{Val list| 2f, 24cf, 26 }}
Line 298: Line 292:


== Crepuscular ==
== Crepuscular ==
{{see also| Fifive family #Crepuscular }}
{{See also| Fifive family #Crepuscular }}


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 50/49, 4375/4374
[[Comma list]]: 50/49, 4375/4374


[[Mapping]]: [{{val|2 2 3 4}}, {{val|0 5 7 7}}]
[[Mapping]]: [{{val| 2 2 3 4 }}, {{val| 0 5 7 7 }}]


{{Multival|legend=1|10 14 14 -1 -6 -7}}
{{Multival|legend=1|10 14 14 -1 -6 -7}}


[[POTE generator]]: ~27/25 = 140.349
[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~27/25 = 140.349


{{Val list|legend=1| 8d, 26, 34d, 60d }}
{{Val list|legend=1| 8d, 26, 34d, 60d }}
Line 319: Line 313:
Comma list: 50/49, 99/98, 864/847
Comma list: 50/49, 99/98, 864/847


Mapping: [{{val|2 2 3 4 6}}, {{val|0 5 7 7 4}}]
Mapping: [{{val| 2 2 3 4 6 }}, {{val| 0 5 7 7 4 }}]


POTE generator: ~12/11 = 140.587
Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.587


Optimal GPV sequence: {{Val list| 8d, 26, 34d, 60d }}
Optimal GPV sequence: {{Val list| 8d, 26, 34d, 60d }}
Line 332: Line 326:
Comma list: 50/49, 78/77, 99/98, 144/143
Comma list: 50/49, 78/77, 99/98, 144/143


Mapping: [{{val|2 2 3 4 6 6}}, {{val|0 5 7 7 4 6}}]
Mapping: [{{val| 2 2 3 4 6 6 }}, {{val| 0 5 7 7 4 6 }}]


POTE generator: ~12/11 = 140.554
Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.554


Optimal GPV sequence: {{Val list| 8d, 26, 34d, 60d }}
Optimal GPV sequence: {{Val list| 8d, 26, 34d, 60d }}
Line 343: Line 337:
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Comic]].''
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Comic]].''


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 50/49, 2240/2187
[[Comma list]]: 50/49, 2240/2187
Line 351: Line 345:
{{Multival|legend=1| 4 14 14 13 11 -7 }}
{{Multival|legend=1| 4 14 14 13 11 -7 }}


[[POTE generator]]: ~81/80 = 54.699
[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~81/80 = 54.699


{{Val list|legend=1| 20cd, 22 }}
{{Val list|legend=1| 20cd, 22 }}
Line 364: Line 358:
Mapping: [{{val| 2 1 -3 -2 -4 }}, {{val| 0 2 7 7 10 }}]
Mapping: [{{val| 2 1 -3 -2 -4 }}, {{val| 0 2 7 7 10 }}]


POTE generator: ~81/80 = 55.184
Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 55.184


Optimal GPV sequence: {{Val list| 20cde, 22 }}
Optimal GPV sequence: {{Val list| 20cde, 22 }}
Line 377: Line 371:
Mapping: [{{val| 2 1 -3 -2 -4 3 }}, {{val| 0 2 7 7 10 4 }}]
Mapping: [{{val| 2 1 -3 -2 -4 3 }}, {{val| 0 2 7 7 10 4 }}]


POTE generator: ~81/80 = 54.435
Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 54.435


Optimal GPV sequence: {{Val list| 22 }}
Optimal GPV sequence: {{Val list| 22 }}
Line 384: Line 378:


== Bipyth ==
== Bipyth ==
{{see also| Archytas clan #Superpyth }}
{{See also| Archytas clan #Superpyth }}


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 50/49, 20480/19683
[[Comma list]]: 50/49, 20480/19683
Line 394: Line 388:
{{Multival|legend=1| 2 18 18 24 23 -9 }}
{{Multival|legend=1| 2 18 18 24 23 -9 }}


[[POTE generator]]: ~3/2 = 709.437
[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~3/2 = 709.437


{{Val list|legend=1| 10cd, 12cd, 22 }}
{{Val list|legend=1| 10cd, 12cd, 22 }}
Line 407: Line 401:
Mapping: [{{val| 2 0 -24 -23 -9 }}, {{val| 0 1 9 9 5 }}]
Mapping: [{{val| 2 0 -24 -23 -9 }}, {{val| 0 1 9 9 5 }}]


POTE generator: ~3/2 = 709.310
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 709.310


Optimal GPV sequence: {{Val list| 10cd, 12cde, 22 }}
Optimal GPV sequence: {{Val list| 10cd, 12cde, 22 }}
Line 414: Line 408:


== Sedecic ==
== Sedecic ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 50/49, 546875/524288
[[Comma list]]: 50/49, 546875/524288
Line 422: Line 416:
{{Multival|legend=1| 16 0 0 -37 -45 0 }}
{{Multival|legend=1| 16 0 0 -37 -45 0 }}


[[POTE generator]]: ~3/2 = 700.554
[[Optimal tuning]] ([[POTE]]): ~128/125 = 1\16, ~3/2 = 700.554


{{Val list|legend=1| 16, 32, 48 }}
{{Val list|legend=1| 16, 32, 48 }}
Line 435: Line 429:
Mapping: [{{val| 16 0 37 45 30 }}, {{val| 0 1 0 0 1 }}]
Mapping: [{{val| 16 0 37 45 30 }}, {{val| 0 1 0 0 1 }}]


POTE generator: ~3/2 = 700.331
Optimal tuning (POTE): ~22/21 = 1\16, ~3/2 = 700.331


Optimal GPV sequence: {{Val list| 16, 32, 48 }}
Optimal GPV sequence: {{Val list| 16, 32, 48 }}
Line 442: Line 436:


== Duodecim ==
== Duodecim ==
{{see also| Compton family #Duodecim }}
{{See also| Compton family #Duodecim }}


Subgroup: 2.3.5.7.11
[[Subgroup]]: 2.3.5.7.11


[[Comma list]]: 36/35, 50/49, 64/63
[[Comma list]]: 36/35, 50/49, 64/63
Line 450: Line 444:
[[Mapping]]: [{{val| 12 19 28 34 0 }}, {{val| 0 0 0 0 1 }}]
[[Mapping]]: [{{val| 12 19 28 34 0 }}, {{val| 0 0 0 0 1 }}]


[[POTE generator]]: ~11/8 = 565.023
[[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~11/8 = 565.023


{{Val list|legend=1| 12, 24d, 36d }}
{{Val list|legend=1| 12, 24d, 36d }}
Line 457: Line 451:


== Vigintiduo ==
== Vigintiduo ==
Subgroup: 2.3.5.7.11
[[Subgroup]]: 2.3.5.7.11


[[Comma list]]: 50/49, 64/63, 245/243
[[Comma list]]: 50/49, 64/63, 245/243
Line 463: Line 457:
[[Mapping]]: [{{val| 22 35 51 62 0 }}, {{val| 0 0 0 0 1 }}]
[[Mapping]]: [{{val| 22 35 51 62 0 }}, {{val| 0 0 0 0 1 }}]


[[POTE generator]]: ~11/8 = 557.563
[[Optimal tuning]] ([[POTE]]): ~36/35 = 1\22, ~11/8 = 557.563


{{Val list|legend=1| 22, 66de, 88bde, 110bd, 198bcdde }}
{{Val list|legend=1| 22, 66de, 88bde, 110bd, 198bcdde }}
Line 470: Line 464:


== Vigin ==
== Vigin ==
Subgroup: 2.3.5.7.11.13
[[Subgroup]]: 2.3.5.7.11.13


[[Comma list]]: 50/49, 55/54, 64/63, 99/98
[[Comma list]]: 50/49, 55/54, 64/63, 99/98
Line 476: Line 470:
[[Mapping]]: [{{val| 22 35 51 62 76 0 }}, {{val| 0 0 0 0 0 1 }}]
[[Mapping]]: [{{val| 22 35 51 62 76 0 }}, {{val| 0 0 0 0 0 1 }}]


[[POTE generator]]: ~13/8 = 844.624
[[Optimal tuning]] ([[POTE]]): ~33/32 = 1\22, ~13/8 = 844.624


{{Val list|legend=1| 22, 44 }}
{{Val list|legend=1| 22, 44 }}

Revision as of 09:11, 13 March 2023

The jubilismic clan tempers out the jubilisma, 50/49, which means 7/5 and 10/7 are identified and the octave is divided in two.

Jubilic

The head of this clan, jubilic, is generated by ~5/4. That and a semioctave gives ~7/4.

Subgroup: 2.5.7

Comma list: 50/49

Sval mapping: [2 0 1], 0 1 1]]

Sval mapping generators: ~7/5, ~5

Gencom mapping: [2 0 0 1], 0 0 1 1]]

Optimal tuning (POTE): ~7/5 = 1\2, ~5/4 = 380.840

Template:Val list

Overview to extensions

Lemba finds the perfect fifth three steps away by tempering out 1029/1024. Astrology, five steps away by tempering out 3125/3072. Decimal, two steps away by tempering out 25/24 and 49/48. Pajara slices the ~7/4 into two. Injera slices the ~5/1 into four. Hedgehog slices the ~7/1 into five.

Lemba, doublewide, and diminished are discussed below; others in the clan are

which are discussed elsewhere.

Lemba

Subgroup: 2.3.5.7

Comma list: 50/49, 525/512

Mapping: [2 2 5 6], 0 3 -1 -1]]

Mapping generators: ~7/5, ~8/7

Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 232.089

Template:Val list

Badness: 0.062208

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 385/384

Mapping: [2 2 5 6 5], 0 3 -1 -1 5]]

Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.974

Optimal GPV sequence: Template:Val list

Badness: 0.041563

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 50/49, 65/64, 78/77

Mapping: [2 2 5 6 5 7], 0 3 -1 -1 5 1]]

Optimal tuning (POTE): ~7/5 = 1\2, ~8/7 = 230.966

Optimal GPV sequence: Template:Val list

Badness: 0.025477

Diminished

Deutsch

Subgroup: 2.3.5.7

Comma list: 36/35, 50/49

Mapping: [4 0 3 5], 0 1 1 1]]

Mapping generators: ~6/5, ~3

Optimal tuning (POTE): ~6/5 = 1\4, ~3/2 = 699.523

Template:Val list

Badness: 0.022401

Scales: diminished12

11-limit

Subgroup: 2.3.5.7.11

Comma list: 36/35, 50/49, 56/55

Mapping: [4 0 3 5 14], 0 1 1 1 0]]

Optimal tuning (POTE): ~6/5 = 1\4, ~3/2 = 709.109

Optimal GPV sequence: Template:Val list

Badness: 0.022132

Scales: diminished12

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 36/35, 40/39, 50/49, 66/65

Mapping: [4 0 3 5 14 15], 0 1 1 1 0 0]]

Optimal tuning (POTE): ~6/5 = 1\4, ~3/2 = 713.773

Optimal GPV sequence: Template:Val list

Badness: 0.019509

Scales: diminished12

Demolished

Subgroup: 2.3.5.7.11

Comma list: 36/35, 45/44, 50/49

Mapping: [4 0 3 5 -5], 0 1 1 1 3]]

Optimal tuning (POTE): ~6/5 = 1\4, ~3/2 = 689.881

Optimal GPV sequence: Template:Val list

Badness: 0.026574

Cohedim

This temperament has been documented in Graham Breed's temperament finder as hemidim, the same name as 11-limit 4e&24 and 13-limit 4ef&24. For 11-limit 8bce&12 temperament, cohedim arguably makes more sense.

Subgroup: 2.3.5.7.11

Comma list: 36/35, 50/49, 125/121

Mapping: [4 1 4 6 6], 0 2 2 2 3]]

Mapping generators: ~6/5, ~11/7

Optimal tuning (POTE): ~6/5 = 1\4, ~12/11 = 101.679

Optimal GPV sequence: Template:Val list

Badness: 0.054965

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 36/35, 50/49, 66/65, 125/121

Mapping: [4 1 4 6 6 7], 0 2 2 2 3 3]]

Optimal tuning (POTE): ~6/5 = 1\4, ~12/11 = 102.299

Optimal GPV sequence: Template:Val list

Badness: 0.041707

Doublewide

Subgroup: 2.3.5.7

Comma list: 50/49, 875/864

Mapping: [2 1 3 4], 0 4 3 3]]

Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 325.719

Template:Val list

Badness: 0.043462

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 99/98, 875/864

Mapping: [2 1 3 4 8], 0 4 3 3 -2]]

Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 325.545

Optimal GPV sequence: Template:Val list

Badness: 0.032058

Fleetwood

Subgroup: 2.3.5.7.11

Comma list: 50/49, 55/54, 176/175

Mapping: [2 1 3 4 2], 0 4 3 3 9]]

Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.038

Optimal GPV sequence: Template:Val list

Badness: 0.035202

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 55/54, 65/63, 176/175

Mapping: [2 1 3 4 2 3], 0 4 3 3 9 8]]

Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 327.841

Optimal GPV sequence: Template:Val list

Badness: 0.031835

Cavalier

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 875/864

Mapping: [2 1 3 4 1], 0 4 3 3 11]]

Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.427

Optimal GPV sequence: Template:Val list

Badness: 0.052899

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 50/49, 78/77, 325/324

Mapping: [2 1 3 4 1 2], 0 4 3 3 11 10]]

Optimal tuning (POTE): ~7/5 = 1\2, ~6/5 = 323.396

Optimal GPV sequence: Template:Val list

Badness: 0.035040

Elvis

For the 5-limit version of this temperament, see High badness temperaments #Elvis.

Subgroup: 2.3.5.7

Comma list: 50/49, 8505/8192

Mapping: [2 1 10 11], 0 2 -5 -5]]

Wedgie⟨⟨ 4 -10 -10 -25 -27 5 ]]

Optimal tuning (POTE): ~7/5 = 1\2, ~45/32 = 553.721

Template:Val list

Badness: 0.141473

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 1344/1331

Mapping: [2 1 10 11 8], 0 2 -5 -5 -1]]

Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.882

Optimal GPV sequence: Template:Val list

Badness: 0.063212

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 50/49, 78/77, 1053/1024

Mapping: [2 1 10 11 8 16], 0 2 -5 -5 -1 -8]]

Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 553.892

Optimal GPV sequence: Template:Val list

Badness: 0.043997

Crepuscular

Subgroup: 2.3.5.7

Comma list: 50/49, 4375/4374

Mapping: [2 2 3 4], 0 5 7 7]]

Wedgie⟨⟨ 10 14 14 -1 -6 -7 ]]

Optimal tuning (POTE): ~7/5 = 1\2, ~27/25 = 140.349

Template:Val list

Badness: 0.086669

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 99/98, 864/847

Mapping: [2 2 3 4 6], 0 5 7 7 4]]

Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.587

Optimal GPV sequence: Template:Val list

Badness: 0.040758

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 78/77, 99/98, 144/143

Mapping: [2 2 3 4 6 6], 0 5 7 7 4 6]]

Optimal tuning (POTE): ~7/5 = 1\2, ~12/11 = 140.554

Optimal GPV sequence: Template:Val list

Badness: 0.024368

Comic

For the 5-limit version of this temperament, see High badness temperaments #Comic.

Subgroup: 2.3.5.7

Comma list: 50/49, 2240/2187

Mapping: [2 1 -3 -2], 0 2 7 7]]

Wedgie⟨⟨ 4 14 14 13 11 -7 ]]

Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 54.699

Template:Val list

Badness: 0.084395

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 99/98, 2662/2625

Mapping: [2 1 -3 -2 -4], 0 2 7 7 10]]

Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 55.184

Optimal GPV sequence: Template:Val list

Badness: 0.045052

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 65/63, 99/98, 968/945

Mapping: [2 1 -3 -2 -4 3], 0 2 7 7 10 4]]

Optimal tuning (POTE): ~7/5 = 1\2, ~81/80 = 54.435

Optimal GPV sequence: Template:Val list

Badness: 0.041470

Bipyth

Subgroup: 2.3.5.7

Comma list: 50/49, 20480/19683

Mapping: [2 0 -24 -23], 0 1 9 9]]

Wedgie⟨⟨ 2 18 18 24 23 -9 ]]

Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 709.437

Template:Val list

Badness: 0.165033

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 121/120, 896/891

Mapping: [2 0 -24 -23 -9], 0 1 9 9 5]]

Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 709.310

Optimal GPV sequence: Template:Val list

Badness: 0.070910

Sedecic

Subgroup: 2.3.5.7

Comma list: 50/49, 546875/524288

Mapping: [16 0 37 45], 0 1 0 0]]

Wedgie⟨⟨ 16 0 0 -37 -45 0 ]]

Optimal tuning (POTE): ~128/125 = 1\16, ~3/2 = 700.554

Template:Val list

Badness: 0.265972

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 385/384, 1331/1323

Mapping: [16 0 37 45 30], 0 1 0 0 1]]

Optimal tuning (POTE): ~22/21 = 1\16, ~3/2 = 700.331

Optimal GPV sequence: Template:Val list

Badness: 0.092774

Duodecim

Subgroup: 2.3.5.7.11

Comma list: 36/35, 50/49, 64/63

Mapping: [12 19 28 34 0], 0 0 0 0 1]]

Optimal tuning (POTE): ~16/15 = 1\12, ~11/8 = 565.023

Template:Val list

Badness: 0.030536

Vigintiduo

Subgroup: 2.3.5.7.11

Comma list: 50/49, 64/63, 245/243

Mapping: [22 35 51 62 0], 0 0 0 0 1]]

Optimal tuning (POTE): ~36/35 = 1\22, ~11/8 = 557.563

Template:Val list

Badness: 0.048372

Vigin

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 55/54, 64/63, 99/98

Mapping: [22 35 51 62 76 0], 0 0 0 0 0 1]]

Optimal tuning (POTE): ~33/32 = 1\22, ~13/8 = 844.624

Template:Val list

Badness: 0.029849