7edf: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
CompactStar (talk | contribs)
No edit summary
Line 7: Line 7:
{| class="wikitable"
{| class="wikitable"
|+
|+
! rowspan="2" | Scale<br>Degree
! rowspan="2" | #
! rowspan="2" |  
! rowspan="2" | Centss
|-
|-


|-
|-
| 1
| 1
| [[Tel:100.2793|100.2793]]
| 100.2793
|-
|-
| 2
| 2
| [[Tel:200.5586|200.5586]]
| 200.5586
|-
|-
| 3
| 3
| [[Tel:300.8379|300.8379]]
| 300.8379
|-
|-
| 4
| 4
| [[Tel:401.1171|401.1171]]
| 401.1171
|-
|-
| 5
| 5
| [[Tel:501.3964|501.3964]]
| 501.3964
|-
|-
| 6
| 6
| [[Tel:601.6757|601.6757]]
| 601.6757
|-
|-
| 7
| 7
Line 34: Line 34:
|-
|-
| 8
| 8
| [[Tel:802.2343|802.2343]]
| 802.2343
|-
|-
| 9
| 9
| [[Tel:902.5136|902.5136]]
| 902.5136
|-
|-
| 10
| 10

Revision as of 01:48, 12 March 2023

← 6edf 7edf 8edf →
Prime factorization 7 (prime)
Step size 100.279 ¢ 
Octave 12\7edf (1203.35 ¢)
(convergent)
Twelfth 19\7edf (1905.31 ¢)
(convergent)
Consistency limit 10
Distinct consistency limit 6

Division of the just perfect fifth into 7 equal parts (7EDF) is related to 12 edo, but with the 3/2 rather than the 2/1 being just. The octave is about 3.3514 cents stretched and the step size is about [[1]] cents. The patent val has a generally sharp tendency for harmonics up to 21, with the exception for 11 and 13.

Lookalikes: 12edo, 19ed3, 31ed6

Intervals

# Centss
1 100.2793
2 200.5586
3 300.8379
4 401.1171
5 501.3964
6 601.6757
7 701.955
8 802.2343
9 902.5136
10 1002.7929
11 1103.0721
12 1203.3514
13 1303.6307
14 1403.91