3L 2s (8/5-equivalent): Difference between revisions
Created page with "{{Infobox MOS|Equalized=2|Equave=8/5|Name=Diatonic|Paucitonic=1|Pattern=LLsLs|nLargeSteps=3|nSmallSteps=2}} '''3L 2s<8/5>''' (sometimes called '''diatonic'''), is a minor six..." |
CompactStar (talk | contribs) Why is there a 14/9-repeating temperament?? |
||
(29 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox MOS | {{Infobox MOS}} | ||
'''3L 2s<8/5>''' | '''3L 2s<8/5>''' is a minor sixth-repeating MOS scale. The notation "<8/5>" means the period of the MOS is 8/5, disambiguating it from octave-repeating [[3L 2s]]. | ||
The generator range is 240 to 342.9 cents, placing it on the [[6/5|diatonic minor third]], usually representing a minor third of some type (like [[6/5]]). The bright (chroma-positive) generator is, however, its minor sixth complement (480 to 514.3 cents). | The generator range is 240 to 342.9 cents, placing it on the [[6/5|diatonic minor third]], usually representing a minor third of some type (like [[6/5]]). The bright (chroma-positive) generator is, however, its minor sixth complement (480 to 514.3 cents). | ||
Because this | Because this is a minor sixth-repeating scale, each tone has an 8/5 minor sixth above it. The scale has one major chord, one minor chord and three diminished chords. This scale also has two diminished 7th chords, making it a warped melodic minor scale. | ||
[[Basic]] | [[Basic]] 3L 2s<8/5> is in [[8ed8/5]], which is a very good minor sixth-based equal tuning similar to [[12edo]]. | ||
==Notation== | ==Notation== | ||
There are 2 main ways to notate | There are 2 main ways to notate this scale. One method uses a simple sixth repeating notation consisting of 5 naturals (La, Si, Do, Re, Mi). Given that 1-7/6-3/2 is minor sixth-equivalent to a tone cluster of 1-16/15-7/6, it may be more convenient to notate these diatonic scales as repeating at the double sixth (diminished eleventh~tenth), however it does make navigating the [[Generator|genchain]] harder. This way, 3/2 is its own pitch class, distinct from 16\15. Notating this way produces a tenth which is the Dorian mode of Annapolis[6L 4s] or Oriole[6L 4s]. Since there are exactly 10 naturals in double sixth notation, Greek numerals 1-10 may be used. | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
Line 45: | Line 45: | ||
124.1379 | 124.1379 | ||
|2\11 | |2\11 | ||
141.1765 | |||
|3\14 | |3\14 | ||
163.{{Overline|63}} | |||
|- | |- | ||
|Sib | |Sib | ||
Line 60: | Line 60: | ||
82.7586 | 82.7586 | ||
|1\11 | |1\11 | ||
70.5882 | |||
|1\14 | |1\14 | ||
54.{{Overline|54}} | |||
|- | |- | ||
|Si | |Si | ||
Line 77: | Line 77: | ||
206.89655 | 206.89655 | ||
|3\11 | |3\11 | ||
211.7647 | |||
|4\14 | |4\14 | ||
218.{{Overline|18}} | |||
|- | |- | ||
|Si# | |Si# | ||
Line 94: | Line 94: | ||
331.0345 | 331.0345 | ||
|5\11 | |5\11 | ||
352.9412 | |||
|7\14 | |7\14 | ||
381.{{Overline|81}} | |||
|- | |- | ||
|Dob | |Dob | ||
Line 109: | Line 109: | ||
165.5172 | 165.5172 | ||
|2\11 | |2\11 | ||
141.1765 | |||
|2\14 | |2\14 | ||
109.{{Overline|09}} | |||
|- | |- | ||
|'''Do''' | |'''Do''' | ||
Line 126: | Line 126: | ||
'''289.6552''' | '''289.6552''' | ||
|'''4\11''' | |'''4\11''' | ||
''' | '''282.3529''' | ||
|'''5\14''' | |'''5\14''' | ||
''' | '''272.{{Overline|72}}''' | ||
|- | |- | ||
|Do# | |Do# | ||
Line 143: | Line 143: | ||
413.7931 | 413.7931 | ||
|6\11 | |6\11 | ||
423.5294 | |||
|8\14 | |8\14 | ||
436.{{Overline|36}} | |||
|- | |- | ||
|Reb | |Reb | ||
Line 158: | Line 158: | ||
372.4138 | 372.4138 | ||
|5\11 | |5\11 | ||
352.9412 | |||
|6\14 | |6\14 | ||
327.{{Overline|27}} | |||
|- | |- | ||
|'''Re''' | |'''Re''' | ||
Line 175: | Line 175: | ||
'''496.5517''' | '''496.5517''' | ||
|'''7\11''' | |'''7\11''' | ||
''' | '''494.11765''' | ||
|'''9\14''' | |'''9\14''' | ||
''' | '''490.{{Overline|90}}''' | ||
|- | |- | ||
|Re# | |Re# | ||
Line 192: | Line 192: | ||
620.6897 | 620.6897 | ||
|9\11 | |9\11 | ||
635.2941 | |||
|12\14 | |12\14 | ||
654.{{Overline|54}} | |||
|- | |- | ||
|Mib | |Mib | ||
Line 207: | Line 207: | ||
579.3103 | 579.3103 | ||
|8\11 | |8\11 | ||
564.7059 | |||
|10\14 | |10\14 | ||
545.{{Overline|45}} | |||
|- | |- | ||
|Mi | |Mi | ||
Line 224: | Line 224: | ||
703.4483 | 703.4483 | ||
|10\11 | |10\11 | ||
705.88235 | |||
|13\14 | |13\14 | ||
709.{{Overline|09}} | |||
|- | |- | ||
|Mi# | |Mi# | ||
Line 241: | Line 241: | ||
827.5862 | 827.5862 | ||
|12\11 | |12\11 | ||
847.0588 | |||
|16\14 | |16\14 | ||
872.{{Overline|72}} | |||
|- | |- | ||
|Lab | |Lab | ||
Line 256: | Line 256: | ||
662.069 | 662.069 | ||
|9\11 | |9\11 | ||
635.2941 | |||
|11\14 | |11\14 | ||
600 | |||
|- | |- | ||
!La | !La | ||
Line 273: | Line 273: | ||
!19\19 | !19\19 | ||
786.2069 | 786.2069 | ||
! | !11\11 | ||
! | 776.4706 | ||
!14\14 | |||
763.{{Overline|63}} | |||
|- | |- | ||
|La# | |La# | ||
Line 289: | Line 292: | ||
910.3448 | 910.3448 | ||
|13\11 | |13\11 | ||
917.6471 | |||
|17\14 | |17\14 | ||
927.{{Overline|27}} | |||
|- | |- | ||
|Sib | |Sib | ||
Line 304: | Line 307: | ||
868.9655 | 868.9655 | ||
|12\11 | |12\11 | ||
847.0588 | |||
|15\14 | |15\14 | ||
818.{{Overline|18}} | |||
|- | |- | ||
|Si | |Si | ||
Line 321: | Line 324: | ||
993.10345 | 993.10345 | ||
|14\11 | |14\11 | ||
988.2353 | |||
|18\14 | |18\14 | ||
981.{{Overline|81}} | |||
|- | |- | ||
|Si# | |Si# | ||
Line 338: | Line 341: | ||
1117.2414 | 1117.2414 | ||
|16\11 | |16\11 | ||
1129.4118 | |||
|21\14 | |21\14 | ||
1145.{{Overline|45}} | |||
|- | |- | ||
|Dob | |Dob | ||
Line 353: | Line 356: | ||
951.7241 | 951.7241 | ||
|13\11 | |13\11 | ||
917.6471 | |||
|16\14 | |16\14 | ||
872.{{Overline|72}} | |||
|- | |- | ||
|'''Do''' | |'''Do''' | ||
Line 370: | Line 373: | ||
'''1075.8621''' | '''1075.8621''' | ||
|'''15\11''' | |'''15\11''' | ||
''' | '''1052.8235''' | ||
|'''19\14''' | |'''19\14''' | ||
''' | '''1036.{{Overline|36}}''' | ||
|- | |- | ||
|Do# | |Do# | ||
Line 402: | Line 405: | ||
1158.6207 | 1158.6207 | ||
|16\11 | |16\11 | ||
1129.4118 | |||
|20\14 | |20\14 | ||
1090.{{Overline|90}} | |||
|- | |- | ||
|'''Re''' | |'''Re''' | ||
Line 419: | Line 422: | ||
'''1282.7586''' | '''1282.7586''' | ||
|'''18\11''' | |'''18\11''' | ||
''' | '''1270.5882''' | ||
|'''23\14''' | |'''23\14''' | ||
''' | '''1254.{{Overline|54}}''' | ||
|- | |- | ||
|Re# | |Re# | ||
Line 434: | Line 437: | ||
1400 | 1400 | ||
|34\19 | |34\19 | ||
1406. | 1406.89655 | ||
|20\11 | |20\11 | ||
1411.7647 | |||
|26\14 | |26\14 | ||
1418.{{Overline|18}} | |||
|- | |- | ||
|Mib | |Mib | ||
Line 451: | Line 454: | ||
1365.5172 | 1365.5172 | ||
|19\11 | |19\11 | ||
1341.1765 | |||
|24\14 | |24\14 | ||
1309.{{Overline|09}} | |||
|- | |- | ||
|Mi | |Mi | ||
Line 468: | Line 471: | ||
1489.6551 | 1489.6551 | ||
|21\11 | |21\11 | ||
1482.3529 | |||
|27\14 | |27\14 | ||
1472.{{Overline|72}} | |||
|- | |- | ||
|Mi# | |Mi# | ||
Line 485: | Line 488: | ||
1613.7931 | 1613.7931 | ||
|23\11 | |23\11 | ||
1623.5294 | |||
|30\14 | |30\14 | ||
1636.{{Overline|36}} | |||
|- | |- | ||
|Lab | |Lab | ||
Line 500: | Line 503: | ||
1448.2859 | 1448.2859 | ||
|20\11 | |20\11 | ||
1411.7647 | |||
|25\14 | |25\14 | ||
1363.{{Overline|63}} | |||
|- | |- | ||
!La | !La | ||
Line 517: | Line 520: | ||
!38\19 | !38\19 | ||
1572.4138 | 1572.4138 | ||
! | !22\11 | ||
! | 1552.9412 | ||
!28\14 | |||
1527.{{Overline|27}} | |||
|} | |} | ||
{| class="wikitable" | {| class="wikitable" | ||
|+'' | |+''ed8\12 (→ed2\3)'' | ||
! colspan="2" |Notation | ! colspan="2" |Notation | ||
!Supersoft | !Supersoft | ||
Line 544: | Line 549: | ||
|Α# | |Α# | ||
|''1\18'' | |''1\18'' | ||
'' | ''44.{{Overline|4}}'' | ||
|''1\13'' | |''1\13'' | ||
'' | ''61.5385'' | ||
|''2\21'' | |''2\21'' | ||
'' | ''76.1905'' | ||
| rowspan="2" |''1\8'' | | rowspan="2" |''1\8'' | ||
'' | ''100'' | ||
|''3\19'' | |''3\19'' | ||
'' | ''126.3158'' | ||
|''2\11'' | |''2\11'' | ||
''145.{{Overline|45}}'' | |||
|''3\14'' | |''3\14'' | ||
''171.4286'' | |||
|- | |- | ||
|Sib | |Sib | ||
|Βb | |Βb | ||
|''3\18'' | |''3\18'' | ||
''133.{{Overline|3}}'' | |||
|''2\13'' | |''2\13'' | ||
''123.0769'' | |||
|''3\21'' | |''3\21'' | ||
''114.2857'' | |||
|''2\19'' | |''2\19'' | ||
'' | ''84.2105'' | ||
|''1\11'' | |''1\11'' | ||
'' | ''72.{{Overline|72}}'' | ||
|''1\14'' | |''1\14'' | ||
'' | ''57.1429'' | ||
|- | |- | ||
|Si | |Si | ||
|Β | |Β | ||
|''4\18'' | |''4\18'' | ||
'' | ''177.{{Overline|7}}'' | ||
|''3\13'' | |''3\13'' | ||
''184.6154'' | |||
|''5\21'' | |''5\21'' | ||
''190.4762'' | |||
|''2\8'' | |''2\8'' | ||
'' | ''200'' | ||
|''5\19'' | |''5\19'' | ||
'' | ''210.5263'' | ||
|''3\11'' | |''3\11'' | ||
''218.{{Overline|18}}'' | |||
|''4\14'' | |''4\14'' | ||
''228.5714'' | |||
|- | |- | ||
|Si# | |Si# | ||
|Β# | |Β# | ||
|''5\18'' | |''5\18'' | ||
''222.''{{Overline|2}} | |||
| rowspan="2" |''4\13'' | | rowspan="2" |''4\13'' | ||
''246.15385'' | |||
|''7\21'' | |''7\21'' | ||
'' | ''266.{{Overline|6}}'' | ||
|''3\8'' | |''3\8'' | ||
''300'' | |||
|''8\19'' | |''8\19'' | ||
'' | ''336.8421'' | ||
|''5\11'' | |''5\11'' | ||
'' | ''363.{{Overline|63}}'' | ||
|''7\14'' | |''7\14'' | ||
''400'' | |||
|- | |- | ||
|Dob | |Dob | ||
|Γb | |Γb | ||
|''6\18'' | |''6\18'' | ||
'' | ''266.{{Overline|6}}'' | ||
|''6\21'' | |''6\21'' | ||
''228.5714'' | |||
|''2\8'' | |''2\8'' | ||
'' | ''200'' | ||
|''4\19'' | |''4\19'' | ||
'' | ''168.42105'' | ||
|''2\11'' | |''2\11'' | ||
''145.{{Overline|45}}'' | |||
|''2\14'' | |''2\14'' | ||
''114.2857'' | |||
|- | |- | ||
|'''Do''' | |'''Do''' | ||
|'''Γ''' | |'''Γ''' | ||
|'''''7\18''''' | |'''''7\18''''' | ||
''' | '''''311.{{Overline|1}}''''' | ||
|'''''5\13''''' | |'''''5\13''''' | ||
''' | '''''307.6923''''' | ||
|'''''8\21''''' | |'''''8\21''''' | ||
''' | '''''304.7619''''' | ||
|'''''3\8''''' | |'''''3\8''''' | ||
''' | '''''300''''' | ||
|'''''7\19''''' | |'''''7\19''''' | ||
''''' | '''''294.7368''''' | ||
|'''''4\11''''' | |'''''4\11''''' | ||
''' | '''''290.{{Overline|90}}''''' | ||
|'''''5\14''''' | |'''''5\14''''' | ||
''' | '''''285.7143''''' | ||
|- | |- | ||
|Do# | |Do# | ||
|Γ# | |Γ# | ||
|''8\18'' | |''8\18'' | ||
'' | ''355.{{Overline|5}}'' | ||
|''6\13'' | |''6\13'' | ||
''369.2308'' | |||
|''10\21'' | |''10\21'' | ||
''380.9524'' | |||
| rowspan="2" |''4\8'' | | rowspan="2" |''4\8'' | ||
''400'' | |||
|'' | |''10\19'' | ||
'' | ''421.0526'' | ||
|''6\11'' | |''6\11'' | ||
'' | ''436.{{Overline|36}}'' | ||
|''8\14'' | |''8\14'' | ||
''457.1429'' | |||
|- | |- | ||
|Reb | |Reb | ||
|Δb | |Δb | ||
|''10\18'' | |''10\18'' | ||
'' | ''444.{{Overline|4}}'' | ||
|''7\13'' | |''7\13'' | ||
''430.7692'' | |||
|''11\21'' | |''11\21'' | ||
''419.0476'' | |||
|'' | |''9\19'' | ||
'' | ''378.9474'' | ||
|''5\11'' | |''5\11'' | ||
'' | ''363.{{Overline|63}}'' | ||
|''6\14'' | |''6\14'' | ||
''342.8571'' | |||
|- | |- | ||
|'''Re''' | |'''Re''' | ||
|'''Δ''' | |'''Δ''' | ||
|'''''11\18''''' | |'''''11\18''''' | ||
''' | '''''488.{{Overline|8}}''''' | ||
|'''''8\13''''' | |'''''8\13''''' | ||
''' | '''''492.3077''''' | ||
|'''''13\21''''' | |'''''13\21''''' | ||
''' | '''''495.2381''''' | ||
|'''''5\8''''' | |'''''5\8''''' | ||
''' | '''''500''''' | ||
|'''''12\19''''' | |'''''12\19''''' | ||
''''' | '''''505.2632''''' | ||
|'''''7\11''''' | |'''''7\11''''' | ||
''' | '''''509.{{Overline|09}}''''' | ||
|'''''9\14''''' | |'''''9\14''''' | ||
''' | '''''514.2857''''' | ||
|- | |- | ||
|Re# | |Re# | ||
|Δ# | |Δ# | ||
|''12\18'' | |''12\18'' | ||
'' | ''533.{{Overline|3}}'' | ||
|''9\13'' | |''9\13'' | ||
''553.84615'' | |||
|''15\21'' | |''15\21'' | ||
''571.4286'' | |||
| rowspan="2" |''6\8'' | | rowspan="2" |''6\8'' | ||
'' | ''600'' | ||
|''15\19'' | |''15\19'' | ||
'' | ''631.42105'' | ||
|''9\11'' | |''9\11'' | ||
''654.{{Overline|54}}'' | |||
|''12\14'' | |''12\14'' | ||
''685.7143'' | |||
|- | |- | ||
|Mib | |Mib | ||
|Εb | |Εb | ||
|''14\18'' | |''14\18'' | ||
'' | ''622.{{Overline|2}}'' | ||
|''10\13'' | |''10\13'' | ||
''615.3846'' | |||
|''16\21'' | |''16\21'' | ||
''609.5238'' | |||
|''14\19'' | |''14\19'' | ||
'' | ''589.4737'' | ||
|''8\11'' | |''8\11'' | ||
''581.{{Overline|81}}'' | |||
|''10\14'' | |''10\14'' | ||
''571.4286'' | |||
|- | |- | ||
|Mi | |Mi | ||
|Ε | |Ε | ||
|''15\18'' | |''15\18'' | ||
''666.{{Overline|6}}'' | |||
|''11\13'' | |''11\13'' | ||
''676.9231'' | |||
|''18\21'' | |''18\21'' | ||
''685.7143'' | |||
|''7\8'' | |''7\8'' | ||
''700'' | |||
|''17\19'' | |''17\19'' | ||
'' | ''715.7895'' | ||
|''10\11'' | |''10\11'' | ||
''727.{{Overline|27}}'' | |||
|''13\14'' | |''13\14'' | ||
''742.8571'' | |||
|- | |- | ||
|Mi# | |Mi# | ||
|Ε# | |Ε# | ||
|''16\18'' | |''16\18'' | ||
'' | ''711.{{Overline|1}}'' | ||
| rowspan="2" |''12\13'' | | rowspan="2" |''12\13'' | ||
''738.4615'' | |||
|''20\21'' | |''20\21'' | ||
''761.9048'' | |||
|''8\8'' | |''8\8'' | ||
'' | ''800'' | ||
|''20\19'' | |''20\19'' | ||
'' | ''842.1053'' | ||
|''12\11'' | |''12\11'' | ||
'' | ''872.{{Overline|72}}'' | ||
|''16\14'' | |''16\14'' | ||
''914.2857'' | |||
|- | |- | ||
|Lab | |Lab | ||
|Ϛb/Ϝb | |Ϛb/Ϝb | ||
|''17\18'' | |''17\18'' | ||
''755.{{Overline|5}}'' | |||
|''19\21'' | |''19\21'' | ||
''723.8095'' | |||
|''7\8'' | |''7\8'' | ||
''700'' | |||
|''16\19'' | |''16\19'' | ||
'' | ''673.6842'' | ||
|'' | |''8\11'' | ||
''581.{{Overline|81}}'' | |||
|''11\14'' | |''11\14'' | ||
'' | ''628.5714'' | ||
|- | |- | ||
!La | !La | ||
!Ϛ/Ϝ | !Ϛ/Ϝ | ||
! colspan="7" |'' | ! colspan="7" |''800'' | ||
|- | |- | ||
|La# | |La# | ||
|Ϛ#/Ϝ# | |Ϛ#/Ϝ# | ||
|''19\18'' | |''19\18'' | ||
''844.{{Overline|4}}'' | |||
|''14\13'' | |''14\13'' | ||
''861.5385'' | |||
|''23\21'' | |''23\21'' | ||
''876.1905'' | |||
| rowspan="2" |''9\8'' | | rowspan="2" |''9\8'' | ||
''900'' | |||
|''22\19'' | |''22\19'' | ||
'' | ''926.3158'' | ||
|''13\11'' | |''13\11'' | ||
''945.{{Overline|45}}'' | |||
|''17\14'' | |''17\14'' | ||
''971.4286'' | |||
|- | |- | ||
|Sib | |Sib | ||
|Ζb | |Ζb | ||
|''21\18'' | |''21\18'' | ||
''933.{{Overline|3}}'' | |||
|''15\13'' | |''15\13'' | ||
''923.0769'' | |||
|''24\21'' | |''24\21'' | ||
''914.2857'' | |||
|''21\19'' | |''21\19'' | ||
'' | ''884.2105'' | ||
|''12\11'' | |''12\11'' | ||
'' | ''872.{{Overline|72}}'' | ||
|''15\14'' | |''15\14'' | ||
''857.1429'' | |||
|- | |- | ||
|Si | |Si | ||
|Ζ | |Ζ | ||
|''22\18'' | |''22\18'' | ||
'' | ''977.{{Overline|7}}'' | ||
|''16\13'' | |''16\13'' | ||
''984.6154'' | |||
|''26\21'' | |''26\21'' | ||
''990.4762'' | |||
|''10\8'' | |''10\8'' | ||
'' | ''1000'' | ||
|''24\19'' | |''24\19'' | ||
'' | ''1010.5263'' | ||
|''14\11'' | |''14\11'' | ||
''1018.{{Overline|18}}'' | |||
|''18\14'' | |''18\14'' | ||
''1028.5714'' | |||
|- | |- | ||
|Si# | |Si# | ||
|Ζ# | |Ζ# | ||
|''23\18'' | |''23\18'' | ||
''1022.{{Overline|2}}'' | |||
| rowspan="2" |''17\13'' | | rowspan="2" |''17\13'' | ||
''1046.15385'' | |||
|''28\21'' | |''28\21'' | ||
''1066.{{Overline|6}}'' | |||
|''11\8'' | |''11\8'' | ||
''1100'' | |||
|''27\19'' | |''27\19'' | ||
'' | ''1136.8421'' | ||
|''16\11'' | |''16\11'' | ||
'' | ''1163.{{Overline|63}}'' | ||
|''21\14'' | |''21\14'' | ||
'' | ''1200'' | ||
|- | |- | ||
|Dob | |Dob | ||
|Ηb | |Ηb | ||
|''24\18'' | |''24\18'' | ||
'' | ''1066.{{Overline|6}}'' | ||
|''27\21'' | |''27\21'' | ||
''1028.5714'' | |||
|''10\8'' | |''10\8'' | ||
'' | ''1000'' | ||
|''23\19'' | |''23\19'' | ||
'' | ''968.42105'' | ||
|''13\11'' | |''13\11'' | ||
''945.{{Overline|45}}'' | |||
|''16\14'' | |''16\14'' | ||
''914.2857'' | |||
|- | |- | ||
|'''Do''' | |'''Do''' | ||
|'''Η''' | |'''Η''' | ||
|'''''25\18''''' | |'''''25\18''''' | ||
''' | '''''1111.{{Overline|1}}''''' | ||
|'''''18\13''''' | |'''''18\13''''' | ||
''' | '''''1107.6923''''' | ||
|'''''29\21''''' | |'''''29\21''''' | ||
''' | '''''1104.7619''''' | ||
|'''''11\8''''' | |'''''11\8''''' | ||
''' | '''''1100''''' | ||
|'''''26\19''''' | |'''''26\19''''' | ||
''''' | '''''1094.7368''''' | ||
|'''''15\11''''' | |'''''15\11''''' | ||
''' | '''''1090.{{Overline|90}}''''' | ||
|'''''19\14''''' | |'''''19\14''''' | ||
''' | '''''1085.7143''''' | ||
|- | |- | ||
|Do# | |Do# | ||
|Η# | |Η# | ||
|''26\18'' | |''26\18'' | ||
'' | ''1155.{{Overline|5}}'' | ||
|''19\13'' | |''19\13'' | ||
'' | ''1169.2308'' | ||
|''31\21'' | |''31\21'' | ||
'' | ''1180.9524'' | ||
| rowspan="2" |''12\8'' | | rowspan="2" |''12\8'' | ||
'' | ''1200'' | ||
|''29\19'' | |''29\19'' | ||
'' | ''1221.0526'' | ||
|''17\11'' | |''17\11'' | ||
'' | ''1236.{{Overline|36}}'' | ||
|''22\14'' | |''22\14'' | ||
'' | ''1257.1429'' | ||
|- | |- | ||
|Reb | |Reb | ||
|Θb | |Θb | ||
|''28\18'' | |''28\18'' | ||
'' | ''1244.{{Overline|4}}'' | ||
|''20\13'' | |''20\13'' | ||
'' | ''1230.7692'' | ||
|''32\21'' | |''32\21'' | ||
'' | ''1219.0476'' | ||
|''28\19'' | |''28\19'' | ||
'' | ''1178.9474'' | ||
|''16\11'' | |''16\11'' | ||
'' | ''1163.{{Overline|63}}'' | ||
|''20\14'' | |''20\14'' | ||
'' | ''1142.8571'' | ||
|- | |- | ||
|'''Re''' | |'''Re''' | ||
|'''Θ''' | |'''Θ''' | ||
|'''''29\18''''' | |'''''29\18''''' | ||
''''' | '''''1288.{{Overline|8}}''''' | ||
|'''''21\13''''' | |'''''21\13''''' | ||
''''' | '''''1292.3077''''' | ||
|'''''34\21''''' | |'''''34\21''''' | ||
''''' | '''''1295.2381''''' | ||
|'''''13\8''''' | |'''''13\8''''' | ||
''''' | '''''1300''''' | ||
|'''''31\19''''' | |'''''31\19''''' | ||
''''' | '''''1305.2632''''' | ||
|'''''18\11''''' | |'''''18\11''''' | ||
''''' | '''''1309.{{Overline|09}}''''' | ||
|'''''23\14''''' | |'''''23\14''''' | ||
''''' | '''''1314.2857''''' | ||
|- | |- | ||
|Re# | |Re# | ||
|Θ# | |Θ# | ||
|''30\18'' | |''30\18'' | ||
'' | ''1333.{{Overline|3}}'' | ||
|''22\13'' | |''22\13'' | ||
''1187.9238'' | ''1187.9238'' | ||
|''36\21'' | |''36\21'' | ||
'' | ''1371.4286'' | ||
| rowspan="2" |''14\8'' | | rowspan="2" |''14\8'' | ||
'' | ''1400'' | ||
|''34\19'' | |''34\19'' | ||
'' | ''1431.42105'' | ||
|''20\11'' | |''20\11'' | ||
'' | ''1454.{{Overline|54}}'' | ||
|''26\14'' | |''26\14'' | ||
'' | ''1485.7143'' | ||
|- | |- | ||
|Mib | |Mib | ||
|Ιb | |Ιb | ||
|''32\18'' | |''32\18'' | ||
'' | ''1422.{{Overline|2}}'' | ||
|''23\13'' | |''23\13'' | ||
'' | ''1415.3846'' | ||
|''37\21'' | |''37\21'' | ||
'' | ''1409.5238'' | ||
|''33\19'' | |''33\19'' | ||
'' | ''1389.4737'' | ||
|''19\11'' | |''19\11'' | ||
'' | ''1381.{{Overline|81}}'' | ||
|''24\14'' | |''24\14'' | ||
'' | ''1371.4286'' | ||
|- | |- | ||
|Mi | |Mi | ||
|Ι | |Ι | ||
|''33\18'' | |''33\18'' | ||
'' | ''1466.{{Overline|6}}'' | ||
|''24\13'' | |''24\13'' | ||
'' | ''1476.9231'' | ||
|''39\21'' | |''39\21'' | ||
'' | ''1485.7143'' | ||
|''15\8'' | |''15\8'' | ||
'' | ''1500'' | ||
|''36\19'' | |''36\19'' | ||
'' | ''1515.7895'' | ||
|''21\11'' | |''21\11'' | ||
'' | ''1527.{{Overline|27}}'' | ||
|''27\14'' | |''27\14'' | ||
'' | ''1542.8571'' | ||
|- | |- | ||
|Mi# | |Mi# | ||
|Ι# | |Ι# | ||
|''34\18'' | |''34\18'' | ||
'' | ''1511.{{Overline|1}}'' | ||
| rowspan="2" |''25\13'' | | rowspan="2" |''25\13'' | ||
'' | ''1538.4615'' | ||
|''41\21'' | |''41\21'' | ||
'' | ''1561.9048'' | ||
|''16\8'' | |''16\8'' | ||
'' | ''1600'' | ||
|''39\19'' | |''39\19'' | ||
'' | ''1642.1053'' | ||
|''23\11'' | |''23\11'' | ||
'' | ''1672.{{Overline|72}}'' | ||
|''30\14'' | |''30\14'' | ||
'' | ''1714.2857'' | ||
|- | |- | ||
|Lab | |Lab | ||
|Αb | |Αb | ||
|''35\18'' | |''35\18'' | ||
'' | ''1555.{{Overline|5}}'' | ||
|''40\21'' | |''40\21'' | ||
'' | ''1523.8095'' | ||
|''15\8'' | |''15\8'' | ||
'' | ''1500'' | ||
|''35\19'' | |''35\19'' | ||
'' | ''1473.6842'' | ||
|''20\11'' | |''20\11'' | ||
'' | ''1454.{{Overline|54}}'' | ||
|''25\14'' | |''25\14'' | ||
'' | ''1428.5714'' | ||
|- | |- | ||
!La | !La | ||
!Α | !Α | ||
! colspan="7" |'' | ! colspan="7" |''1600'' | ||
|} | |} | ||
Line 1,009: | Line 1,014: | ||
{| class="wikitable" | {| class="wikitable" | ||
!Generators | !Generators | ||
! | !Sixth notation | ||
!Interval category name | !Interval category name | ||
!Generators | !Generators | ||
!Notation of | !Notation of sixth inverse | ||
!Interval category name | !Interval category name | ||
|- | |- | ||
Line 1,018: | Line 1,023: | ||
|- | |- | ||
|0 | |0 | ||
| | |La | ||
|perfect sixth (minor sixth) | |||
|0 | |||
|La | |||
|perfect unison | |perfect unison | ||
|- | |- | ||
|1 | |1 | ||
| | |Re | ||
|perfect | |perfect fourth | ||
| -1 | | -1 | ||
| | |Do | ||
| | |minor third | ||
|- | |- | ||
|2 | |2 | ||
| | |Si | ||
| | |major second | ||
| -2 | | -2 | ||
| | |Mib | ||
| | |diminished fifth | ||
|- | |- | ||
|3 | |3 | ||
| | |Mi | ||
| | |perfect fifth | ||
| -3 | | -3 | ||
| | |Sib | ||
| | |minor second | ||
|- | |- | ||
|4 | |4 | ||
| | |Do# | ||
| | |major third | ||
| -4 | | -4 | ||
| | |Reb | ||
| | |diminished fourth | ||
|- | |- | ||
| colspan="6" |The chromatic 8-note MOS also has the following intervals (from some root): | | colspan="6" |The chromatic 8-note MOS also has the following intervals (from some root): | ||
|- | |- | ||
|5 | |5 | ||
| | |La# | ||
| | |augmented unison (chroma) | ||
| -5 | | -5 | ||
| | |Lab | ||
| | |diminished sixth | ||
|- | |- | ||
|6 | |6 | ||
| | |Re# | ||
| | |augmented fourth | ||
| -6 | | -6 | ||
| | |Dob | ||
| | |diminished third | ||
|- | |- | ||
|7 | |7 | ||
| | |Si# | ||
| | |augmented second | ||
| -7 | | -7 | ||
| | |Mibb | ||
| | |doubly diminished fifth | ||
|} | |} | ||
==Genchain== | ==Genchain== | ||
The generator chain for this scale is as follows: | The generator chain for this scale is as follows: | ||
{| class="wikitable" | {| class="wikitable" | ||
| | |Sibb | ||
| | |Mibb | ||
| | |Dob | ||
| | |Lab | ||
| | |Reb | ||
| | |Sib | ||
| | |Mib | ||
| | |Do | ||
| | |La | ||
| | |Re | ||
| | |Si | ||
| | |Mi | ||
| | |Do# | ||
| | |La# | ||
| | |Re# | ||
| | |Si# | ||
| | |Mi# | ||
|- | |- | ||
|d2 | |d2 | ||
| | |dd5 | ||
|d3 | |d3 | ||
|d6 | |d6 | ||
|d4 | |d4 | ||
|m2 | |m2 | ||
| | |d5 | ||
| | |m3 | ||
|P1 | |P1 | ||
|P4 | |P4 | ||
|M2 | |M2 | ||
| | |P5 | ||
| | |M3 | ||
|A1 | |A1 | ||
|A4 | |A4 | ||
Line 1,115: | Line 1,120: | ||
|} | |} | ||
==Modes== | ==Modes== | ||
The mode names are based on the | The mode names are based on the modes of the diatonic scale , in order of size: | ||
{| class="wikitable" | {| class="wikitable" | ||
!Mode | !Mode | ||
!Scale | !Scale | ||
![[Modal UDP Notation|UDP]] | ![[Modal UDP Notation|UDP]] | ||
! colspan="4" |Interval type | ! colspan="4" |Interval type | ||
|- | |- | ||
!name | !name | ||
Line 1,130: | Line 1,135: | ||
!5th | !5th | ||
|- | |- | ||
| | |Hindu | ||
|LLsLs | |LLsLs | ||
|<nowiki>4|0</nowiki> | |<nowiki>4|0</nowiki> | ||
|M | |M | ||
| | |M | ||
|P | |||
|P | |P | ||
|- | |- | ||
| | |Minor | ||
|LsLLs | |LsLLs | ||
|<nowiki>3|1</nowiki> | |<nowiki>3|1</nowiki> | ||
|M | |M | ||
|m | |||
|P | |P | ||
|P | |P | ||
|- | |- | ||
| | |Half diminished | ||
|LsLsL | |LsLsL | ||
|<nowiki>2|2</nowiki> | |<nowiki>2|2</nowiki> | ||
|M | |M | ||
|m | |||
|P | |P | ||
| | |d | ||
|- | |- | ||
| | |Diminished | ||
|sLLsL | |sLLsL | ||
|<nowiki>1|3</nowiki> | |<nowiki>1|3</nowiki> | ||
|m | |||
|m | |m | ||
|P | |P | ||
| | |d | ||
|- | |- | ||
| | |Altered | ||
|sLsLL | |sLsLL | ||
|<nowiki>0|4</nowiki> | |<nowiki>0|4</nowiki> | ||
|m | |m | ||
| | |m | ||
|d | |||
|d | |d | ||
|} | |} | ||
==Temperaments== | ==Temperaments== | ||
The most basic rank-2 temperament interpretation of | The most basic rank-2 temperament interpretation of this diatonic is '''Aeolianic''', which has septimal 6:7:9 or pental 10:12:15 chords spelled <code>root-(p-1g)-(3g)</code> (p = the minor sixth, g = the approximate 4/3). The name "Aeolianic" comes from the Aeolian minor mode having the minor sixth as its characteristic interval. | ||
==='''Aeolianic-Meantone'''=== | |||
[[Subgroup]]: | [[Subgroup]]: 8/5.4/3.3/2 | ||
[[Comma]] list: [[ | [[Comma]] list: [[81/80]] | ||
[[POL2]] generator: ~ | [[POL2]] generator: ~6/5 = 308.3057 | ||
[[Mapping]]: [{{val|1 1 | [[Mapping]]: [{{val|1 1 2}}, {{val|0 -1 -3}}] | ||
[[ | [[Optimal ET sequence]]: 5ed8/5, 8ed8/5, 13ed8/5 | ||
==Scale tree== | ==Scale tree== | ||
The spectrum looks like this: | The spectrum looks like this: | ||
{| class="wikitable" | {| class="wikitable" | ||
! colspan=" | ! colspan="3" rowspan="2" |Generator | ||
(bright) | (bright) | ||
! colspan="2" | | ! colspan="2" |Normalised | ||
! colspan="2" |''ed8\12 (→ed2\3)'' | |||
! rowspan="2" |L | ! rowspan="2" |L | ||
! rowspan="2" |s | ! rowspan="2" |s | ||
Line 1,213: | Line 1,201: | ||
! rowspan="2" |Comments | ! rowspan="2" |Comments | ||
|- | |- | ||
!Chroma-positive | |||
!Chroma-negative | |||
!Chroma-positive | !Chroma-positive | ||
!Chroma-negative | !Chroma-negative | ||
Line 1,219: | Line 1,209: | ||
| | | | ||
| | | | ||
| | |514.286 | ||
| | |342.857 | ||
| | |''480'' | ||
| | |''320'' | ||
|1 | |1 | ||
|1 | |1 | ||
Line 1,229: | Line 1,218: | ||
|Equalised | |Equalised | ||
|- | |- | ||
|11\ | |17\28 | ||
| | |||
| | |||
|510 | |||
|330 | |||
|''485.714'' | |||
|''314.286'' | |||
|6 | |||
|5 | |||
|1.200 | |||
| | |||
|- | |||
| | |||
|48\79 | |||
| | |||
|509.7345 | |||
|329.2035 | |||
|''486.076'' | |||
|''313.924'' | |||
|17 | |||
|14 | |||
|1.214 | |||
| | |||
|- | |||
| | |||
|31\51 | |||
| | |||
|509.589 | |||
|328.767 | |||
|''486.2745'' | |||
|''313.7255'' | |||
|11 | |||
|9 | |||
|1.222 | |||
| | |||
|- | |||
|14\23 | |||
| | |||
| | |||
|509.{{Overline|09}} | |||
|327.{{Overline|27}} | |||
|''486.9565'' | |||
|''313.0435'' | |||
|5 | |||
|4 | |||
|1.250 | |||
| | |||
|- | |||
| | |||
|39\64 | |||
| | |||
|508.966 | |||
|326.087 | |||
|''487.5'' | |||
|''312.5'' | |||
|14 | |||
|11 | |||
|1.273 | |||
| | |||
|- | |||
| | |||
|25\41 | |||
| | | | ||
|508.475 | |||
|325.424 | |||
|''487.805'' | |||
|''312.195'' | |||
|9 | |||
|7 | |||
|1.286 | |||
| | | | ||
|- | |||
| | | | ||
|36\59 | |||
| | | | ||
|508.235 | |||
|324.706 | |||
|''488.136'' | |||
|''311.864'' | |||
|13 | |||
|10 | |||
|1.300 | |||
| | | | ||
| | |- | ||
| | |11\18 | ||
| | |||
| | |||
|507.692 | |||
|323.077 | |||
|''488.{{Overline|8}}'' | |||
|''311.{{Overline|1}}'' | |||
|4 | |4 | ||
|3 | |3 | ||
Line 1,243: | Line 1,315: | ||
|- | |- | ||
| | | | ||
| | |63\103 | ||
| | |||
|507.383 | |||
|322.148 | |||
|''489.32'' | |||
|''310.68'' | |||
|23 | |||
|17 | |||
|1.353 | |||
| | |||
|- | |||
| | |||
|52\85 | |||
| | | | ||
|507.317 | |||
|321.951 | |||
|''489.412'' | |||
|''310.588'' | |||
|19 | |||
|14 | |||
|1.357 | |||
| | | | ||
|- | |||
| | | | ||
|41\67 | |||
| | | | ||
| | |507.2165 | ||
| | |321.6495 | ||
|''489.552'' | |||
|''310.448'' | |||
|15 | |||
|11 | |||
|1.364 | |||
| | |||
|- | |||
| | |||
|30\49 | |||
| | |||
|507.062 | |||
|321.127 | |||
|''489.796'' | |||
|''310.204'' | |||
|11 | |11 | ||
|8 | |8 | ||
Line 1,258: | Line 1,365: | ||
|19\31 | |19\31 | ||
| | | | ||
|506.{{Overline|6}} | |||
|320 | |||
|''490.323'' | |||
|''309.678'' | |||
|7 | |||
|5 | |||
|1.400 | |||
| | |||
|- | |||
| | |||
| | |||
|46\75 | |||
|506.422 | |||
|319.266 | |||
|''490.{{Overline|6}}'' | |||
|''309.{{Overline|3}}'' | |||
|17 | |||
|12 | |||
|1.417 | |||
| | | | ||
|- | |||
| | | | ||
|27\44 | |||
| | | | ||
| | |506.25 | ||
| | |318.75 | ||
|''490.{{Overline|90}}'' | |||
|''309.{{Overline|09}}'' | |||
|10 | |||
|7 | |7 | ||
| | |1.429 | ||
|1. | | | ||
|- | |||
| | |||
|35\57 | |||
| | |||
|506.024 | |||
|318.072 | |||
|''491.228'' | |||
|''308.712'' | |||
|13 | |||
|9 | |||
|1.444 | |||
| | |||
|- | |||
| | |||
|43\70 | |||
| | |||
|505.882 | |||
|317.647 | |||
|''491.429'' | |||
|''308.571'' | |||
|16 | |||
|11 | |||
|1.4545 | |||
| | | | ||
|- | |- | ||
| | | | ||
|51\83 | |||
| | | | ||
|505.785 | |||
|317.355 | |||
|''491.566'' | |||
|''308.434'' | |||
|19 | |||
|13 | |||
|1.4615 | |||
| | | | ||
|- | |||
|8\13 | |||
| | | | ||
| | | | ||
| | |505.263 | ||
| | |315.79 | ||
|''492.308'' | |||
|''307.692'' | |||
|3 | |3 | ||
|2 | |2 | ||
|1.500 | |1.500 | ||
| | |Aeolianic-Meantone starts here | ||
|- | |- | ||
| | | | ||
|45\73 | |||
| | | | ||
| | |504.673 | ||
|314.019 | |||
|''493.151'' | |||
|''306.849'' | |||
|17 | |||
|11 | |||
|1.5455 | |||
| | | | ||
|- | |||
| | | | ||
|37\60 | |||
| | | | ||
| | |504.{{Overline|54}} | ||
| | |313.{{Overline|63}} | ||
|''493.{{Overline|3}}'' | |||
|''306.{{Overline|6}}'' | |||
|14 | |14 | ||
|9 | |9 | ||
Line 1,297: | Line 1,473: | ||
|29\47 | |29\47 | ||
| | | | ||
| | |504.348 | ||
| | |313.043 | ||
| | |''493.617'' | ||
|''306.383'' | |||
| | |||
|11 | |11 | ||
|7 | |7 | ||
Line 1,310: | Line 1,485: | ||
|21\34 | |21\34 | ||
| | | | ||
| | |504 | ||
| | |312 | ||
| | |''494.118'' | ||
|''305.882'' | |||
| | |||
|8 | |8 | ||
|5 | |5 | ||
Line 1,323: | Line 1,497: | ||
| | | | ||
|34\55 | |34\55 | ||
| | |503.{{Overline|703}} | ||
| | |311.{{Overline|1}} | ||
| | |''494.{{Overline|54}}'' | ||
| | |''305.{{Overline|45}}'' | ||
| | |||
|13 | |13 | ||
|8 | |8 | ||
Line 1,334: | Line 1,507: | ||
|- | |- | ||
| | | | ||
| | | | ||
|47\76 | |||
|503.571 | |||
|310.714 | |||
|''494.737'' | |||
|''305.263'' | |||
|18 | |||
|11 | |||
|1.636 | |||
| | | | ||
|- | |||
| | | | ||
|13\21 | |||
| | | | ||
| | |503.226 | ||
| | |309.678 | ||
|''495.238'' | |||
|''304.762'' | |||
|5 | |5 | ||
|3 | |3 | ||
Line 1,347: | Line 1,531: | ||
|- | |- | ||
| | | | ||
| | | | ||
|31\50 | |||
|502.{{Overline|702}} | |||
|308.{{Overline|108}} | |||
|''496'' | |||
|''304'' | |||
|12 | |||
|7 | |||
|1.714 | |||
| | |||
|- | |||
| | |||
| | |||
|49\79 | |||
|502.564 | |||
|307.692 | |||
|''496.2025'' | |||
|''303.7975'' | |||
|19 | |||
|11 | |||
|1.727 | |||
| | | | ||
|- | |||
| | | | ||
|18\29 | |||
| | | | ||
| | |502.326 | ||
| | |306.977 | ||
|''496.552'' | |||
|''303.448'' | |||
|7 | |7 | ||
|4 | |4 | ||
Line 1,362: | Line 1,569: | ||
|23\37 | |23\37 | ||
| | | | ||
| | |501.{{Overline|81}} | ||
| | |305.{{Overline|45}} | ||
| | |''497.{{Overline|297}}'' | ||
| | |''302.{{Overline|702}}'' | ||
| | |||
|9 | |9 | ||
|5 | |5 | ||
Line 1,375: | Line 1,581: | ||
|28\45 | |28\45 | ||
| | | | ||
| | |501.492 | ||
| | |304.478 | ||
| | |''497.{{Overline|7}}'' | ||
| | |''302.{{Overline|2}}'' | ||
| | |||
|11 | |11 | ||
|6 | |6 | ||
Line 1,385: | Line 1,590: | ||
| | | | ||
|- | |- | ||
| | | | ||
|33\53 | |33\53 | ||
| | | | ||
| | |501.265 | ||
| | |303.797 | ||
| | |''498.113'' | ||
| | |''301.887'' | ||
|13 | |13 | ||
|7 | |7 | ||
Line 1,398: | Line 1,602: | ||
| | | | ||
|- | |- | ||
| | | | ||
|38\61 | |||
| | | | ||
|501.09 | |||
|303.297 | |||
|''498.361'' | |||
|''301.639'' | |||
|15 | |||
|8 | |||
|1.875 | |||
| | | | ||
|- | |- | ||
| | | | ||
|43\69 | |||
| | | | ||
| | |500.971 | ||
| | |302.913 | ||
| | |''498.551'' | ||
|''301.449'' | |||
|17 | |||
| | |||
| | |||
|9 | |9 | ||
| | |1.889 | ||
| | | | ||
|- | |- | ||
|5\8 | |||
| | | | ||
| | | | ||
| | |500 | ||
|300 | |||
|''500'' | |||
|''300'' | |||
|2 | |||
|1 | |||
|2.000 | |||
|Aeolianic-Meantone ends, Aeolianic-Pythagorean begins | |||
|- | |||
| | | | ||
|42\67 | |42\67 | ||
| | | | ||
| | |499.01 | ||
| | |297.03 | ||
|''501.4925'' | |||
|''298.5075'' | |||
|17 | |17 | ||
|8 | |8 | ||
Line 1,437: | Line 1,650: | ||
| | | | ||
|- | |- | ||
| | | | ||
|37\59 | |37\59 | ||
| | | | ||
| | |498.876 | ||
| | |296.629 | ||
| | |''501.695'' | ||
|''298.305'' | |||
|15 | |15 | ||
|7 | |7 | ||
Line 1,450: | Line 1,662: | ||
| | | | ||
|- | |- | ||
| | | | ||
|32\51 | |32\51 | ||
| | | | ||
| | |498.701 | ||
| | |296.104 | ||
| | |''501.961'' | ||
| | |''298.039'' | ||
|13 | |13 | ||
|6 | |6 | ||
Line 1,466: | Line 1,677: | ||
|27\43 | |27\43 | ||
| | | | ||
| | |498.461 | ||
| | |295.385 | ||
| | |''502.326'' | ||
|''297.674'' | |||
| | |||
|11 | |11 | ||
|5 | |5 | ||
Line 1,479: | Line 1,689: | ||
|22\35 | |22\35 | ||
| | | | ||
| | |498.113 | ||
| | |294.34 | ||
| | |''502.857'' | ||
|''297.143'' | |||
| | |||
|9 | |9 | ||
|4 | |4 | ||
Line 1,490: | Line 1,699: | ||
|- | |- | ||
| | | | ||
| | | | ||
|39\62 | |||
|497.872 | |||
|293.617 | |||
|''503.226'' | |||
|''296.774'' | |||
|16 | |||
|7 | |||
|2.286 | |||
| | | | ||
|- | |||
| | | | ||
|17\27 | |||
| | | | ||
| | |497.561 | ||
| | |292.683 | ||
|''503.{{Overline|703}}'' | |||
|''296.{{Overline|296}}'' | |||
|7 | |7 | ||
|3 | |3 | ||
Line 1,505: | Line 1,725: | ||
| | | | ||
|29\46 | |29\46 | ||
| | |497.143 | ||
| | |291.429 | ||
| | |''504.348'' | ||
|''295.652'' | |||
| | |||
|12 | |12 | ||
|5 | |5 | ||
Line 1,516: | Line 1,735: | ||
|- | |- | ||
| | | | ||
| | | | ||
|41\65 | |||
|496.{{Overline|96}} | |||
|290.{{Overline|90}} | |||
|''504.615'' | |||
|''295.385'' | |||
|17 | |||
|7 | |||
|2.429 | |||
| | | | ||
|- | |||
| | | | ||
|12\19 | |||
| | | | ||
| | |496.552 | ||
| | |289.655 | ||
|''505.263'' | |||
|''294.737'' | |||
|5 | |5 | ||
|2 | |2 | ||
Line 1,529: | Line 1,759: | ||
|- | |- | ||
| | | | ||
| | | | ||
|31\49 | |||
|496 | |||
|288 | |||
|''506.122'' | |||
|''293.878'' | |||
|13 | |||
|5 | |||
|2.600 | |||
| | | | ||
|- | |||
| | | | ||
| | | | ||
| | |50\79 | ||
| | |495.868 | ||
|287.633 | |||
|''506.329'' | |||
|''293.671'' | |||
|21 | |||
|8 | |||
|2.625 | |||
| | |||
|- | |||
| | |||
|19\30 | |||
| | |||
|495.652 | |||
|286.957 | |||
|''506.{{Overline|6}}'' | |||
|''293.{{Overline|3}}'' | |||
|8 | |8 | ||
|3 | |3 | ||
Line 1,544: | Line 1,797: | ||
|26\41 | |26\41 | ||
| | | | ||
|495.238 | |||
|285.714 | |||
|''507.317'' | |||
|''292.683'' | |||
|11 | |||
|4 | |||
|2.750 | |||
| | |||
|- | |||
| | |||
|33\52 | |||
| | |||
|495 | |||
|285 | |||
|''507.692'' | |||
|''292.308'' | |||
|14 | |||
|5 | |||
|2.800 | |||
| | |||
|- | |||
| | |||
|40\63 | |||
| | |||
|494.536 | |||
|284.536 | |||
|''507.9365'' | |||
|''292.0635'' | |||
|17 | |||
|6 | |||
|2.833 | |||
| | |||
|- | |||
| | |||
|47\74 | |||
| | |||
|494.737 | |||
|284.211 | |||
|''508.{{Overline|108}}'' | |||
|''291.{{Overline|891}}'' | |||
|20 | |||
|7 | |||
|2.857 | |||
| | | | ||
|- | |||
| | | | ||
|54\85 | |||
| | | | ||
| | |494.6565 | ||
| | |283.9695 | ||
| | |''508.235'' | ||
| | |''291.765'' | ||
|2. | |23 | ||
|8 | |||
|2.875 | |||
| | | | ||
|- | |- | ||
| | | | ||
|61\96 | |||
| | | | ||
|494.{{Overline|594}} | |||
|283.{{Overline|783}} | |||
|''508.{{Overline|3}}'' | |||
|''291.{{Overline|6}}'' | |||
|26 | |||
|9 | |||
|2.889 | |||
| | | | ||
|- | |||
|7\11 | |||
| | | | ||
| | | | ||
| | |494.118 | ||
| | |282.353 | ||
|''509.{{Overline|09}}'' | |||
|''290.{{Overline|90}}'' | |||
|3 | |3 | ||
|1 | |1 | ||
|3.000 | |3.000 | ||
| | |Aeolianic-Pythagorean ends, Aeolianic-Superpyth begins | ||
|- | |||
| | |||
|65\102 | |||
| | |||
|493.671 | |||
|281.013 | |||
|''509.804'' | |||
|''290.196'' | |||
|28 | |||
|9 | |||
|3.111 | |||
| | |||
|- | |||
| | |||
|58\91 | |||
| | |||
|493.617 | |||
|280.851 | |||
|''509.89'' | |||
|''290.11'' | |||
|25 | |||
|8 | |||
|3.125 | |||
| | |||
|- | |||
| | |||
|51\80 | |||
| | |||
|493.548 | |||
|280.645 | |||
|''510'' | |||
|''290'' | |||
|22 | |||
|7 | |||
|3.143 | |||
| | |||
|- | |- | ||
| | | | ||
|44\69 | |||
| | | | ||
| | |493.458 | ||
|280.374 | |||
|''510.145'' | |||
|''289.855'' | |||
|19 | |||
|6 | |||
|3.167 | |||
| | | | ||
|- | |||
| | | | ||
|37\58 | |||
| | | | ||
| | |493.{{Overline|3}} | ||
| | |280 | ||
|''510.345'' | |||
|''289.655'' | |||
|16 | |16 | ||
|5 | |5 | ||
Line 1,583: | Line 1,941: | ||
|30\47 | |30\47 | ||
| | | | ||
| | |493.151 | ||
| | |279.452 | ||
| | |''510.638'' | ||
| | |''289.362'' | ||
|13 | |13 | ||
|4 | |4 | ||
Line 1,596: | Line 1,953: | ||
|23\36 | |23\36 | ||
| | | | ||
| | |492.857 | ||
| | |278.571 | ||
| | |''511.{{Overline|1}}'' | ||
| | |''288.{{Overline|8}}'' | ||
| | |||
|10 | |10 | ||
|3 | |3 | ||
Line 1,609: | Line 1,965: | ||
|16\25 | |16\25 | ||
| | | | ||
| | |492.308 | ||
| | |276.923 | ||
| | |''512'' | ||
| | |''288'' | ||
|7 | |7 | ||
|2 | |2 | ||
Line 1,622: | Line 1,977: | ||
|25\39 | |25\39 | ||
| | | | ||
| | |491.803 | ||
| | |275.41 | ||
| | |''512.8205'' | ||
|''287.1795'' | |||
| | |||
|11 | |11 | ||
|3 | |3 | ||
Line 1,635: | Line 1,989: | ||
|34\53 | |34\53 | ||
| | | | ||
|491.566 | |||
|274.699 | |||
|''513.2075'' | |||
|''286.7925'' | |||
|15 | |||
|4 | |||
|3.750 | |||
| | |||
|- | |||
| | |||
|43\67 | |||
| | |||
|491.429 | |||
|274.286 | |||
|''513.433'' | |||
|''286.567'' | |||
|19 | |||
|5 | |||
|3.800 | |||
| | | | ||
|- | |||
| | | | ||
|52\81 | |||
| | | | ||
| | |491.339 | ||
| | |274.016 | ||
| | |''513.58'' | ||
|''286.42'' | |||
|23 | |||
|6 | |||
|3.833 | |||
| | |||
|- | |||
| | |||
|61\95 | |||
| | |||
|491.275 | |||
|273.825 | |||
|''513.684'' | |||
|''286.316'' | |||
|27 | |||
|7 | |||
|3.857 | |||
| | |||
|- | |||
|9\14 | |||
| | |||
| | |||
|490.{{Overline|90}} | |||
|272.{{Overline|72}} | |||
|''514.286'' | |||
|''285.714'' | |||
|4 | |||
|1 | |||
|4.000 | |||
| | |||
|- | |||
| | |||
|47\73 | |||
| | |||
|490.435 | |||
|271.304 | |||
|''515.0685'' | |||
|''284.3315'' | |||
|21 | |||
|5 | |||
|4.200 | |||
| | |||
|- | |||
| | |||
|38\59 | |||
| | |||
|490.323 | |||
|270.968 | |||
|''515.254'' | |||
|''284.746'' | |||
|17 | |||
|4 | |4 | ||
|3. | |4.250 | ||
| | |||
|- | |||
| | |||
|29\45 | |||
| | |||
|490.141 | |||
|270.422 | |||
|''515.{{Overline|5}}'' | |||
|''284.{{Overline|4}}'' | |||
|13 | |||
|3 | |||
|4.333 | |||
| | |||
|- | |||
| | |||
|20\31 | |||
| | |||
|489.795 | |||
|269.388 | |||
|''516.129'' | |||
|''283.871'' | |||
|9 | |||
|2 | |||
|4.500 | |||
| | | | ||
|- | |- | ||
| | | | ||
|31\48 | |||
| | | | ||
|489.474 | |||
|268.421 | |||
|''516.{{Overline|6}}'' | |||
|''283.{{Overline|3}}'' | |||
|14 | |||
|3 | |||
|4.667 | |||
| | | | ||
|- | |||
| | | | ||
|42\65 | |||
| | | | ||
| | |489.32 | ||
| | |267.961 | ||
|''516.923'' | |||
|''283.077'' | |||
|19 | |||
|4 | |4 | ||
|4.750 | |||
| | |||
|- | |||
|11\17 | |||
| | |||
| | |||
|488.{{Overline|8}} | |||
|266.{{Overline|6}} | |||
|''517.647'' | |||
|''282.353'' | |||
|5 | |||
|1 | |1 | ||
| | |5.000 | ||
| | |Aeolianic-Superpyth ends | ||
|- | |||
| | |||
|35\54 | |||
| | |||
|488.372 | |||
|265.116 | |||
|''518.{{Overline|518}}'' | |||
|''281.{{Overline|481}}'' | |||
|16 | |||
|3 | |||
|5.333 | |||
| | |||
|- | |||
| | |||
|24\37 | |||
| | |||
|488.136 | |||
|264.407 | |||
|''518.{{Overline|918}}'' | |||
|''281.{{Overline|081}}'' | |||
|11 | |||
|2 | |||
|5.500 | |||
| | |||
|- | |||
| | |||
|37\57 | |||
| | |||
|487.912 | |||
|263.736 | |||
|''519.298'' | |||
|''280.702'' | |||
|17 | |||
|3 | |||
|5.667 | |||
| | |||
|- | |- | ||
| | |13\20 | ||
| | | | ||
| | | | ||
|487.5 | |||
|262.2 | |||
|''520'' | |||
|''280'' | |||
|6 | |||
|1 | |||
|6.000 | |||
| | | | ||
|- | |||
|2\3 | |||
| | | | ||
| | | | ||
| | |480 | ||
| | |240 | ||
|''533.{{Overline|3}}'' | |||
|''266.{{Overline|6}}'' | |||
|1 | |1 | ||
|0 | |0 |
Latest revision as of 02:16, 23 May 2023
↖ 2L 1s⟨8/5⟩ | ↑ 3L 1s⟨8/5⟩ | 4L 1s⟨8/5⟩ ↗ |
← 2L 2s⟨8/5⟩ | 3L 2s (8/5-equivalent) | 4L 2s⟨8/5⟩ → |
↙ 2L 3s⟨8/5⟩ | ↓ 3L 3s⟨8/5⟩ | 4L 3s⟨8/5⟩ ↘ |
┌╥╥┬╥┬┐ │║║│║││ │││││││ └┴┴┴┴┴┘
sLsLL
3L 2s<8/5> is a minor sixth-repeating MOS scale. The notation "<8/5>" means the period of the MOS is 8/5, disambiguating it from octave-repeating 3L 2s.
The generator range is 240 to 342.9 cents, placing it on the diatonic minor third, usually representing a minor third of some type (like 6/5). The bright (chroma-positive) generator is, however, its minor sixth complement (480 to 514.3 cents).
Because this is a minor sixth-repeating scale, each tone has an 8/5 minor sixth above it. The scale has one major chord, one minor chord and three diminished chords. This scale also has two diminished 7th chords, making it a warped melodic minor scale.
Basic 3L 2s<8/5> is in 8ed8/5, which is a very good minor sixth-based equal tuning similar to 12edo.
Notation
There are 2 main ways to notate this scale. One method uses a simple sixth repeating notation consisting of 5 naturals (La, Si, Do, Re, Mi). Given that 1-7/6-3/2 is minor sixth-equivalent to a tone cluster of 1-16/15-7/6, it may be more convenient to notate these diatonic scales as repeating at the double sixth (diminished eleventh~tenth), however it does make navigating the genchain harder. This way, 3/2 is its own pitch class, distinct from 16\15. Notating this way produces a tenth which is the Dorian mode of Annapolis[6L 4s] or Oriole[6L 4s]. Since there are exactly 10 naturals in double sixth notation, Greek numerals 1-10 may be used.
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Diatonic | Oriole, Annapolis | 18eds | 13eds | 21eds | 8eds | 19eds | 11eds | 14eds |
La# | Α# | 1\18
46.15385 |
1\13
63.1579 |
2\21
77.41935 |
1\8
100 |
3\19
124.1379 |
2\11
141.1765 |
3\14
163.63 |
Sib | Βb | 3\18
138.4615 |
2\13
126.3158 |
3\21
116.129 |
2\19
82.7586 |
1\11
70.5882 |
1\14
54.54 | |
Si | Β | 4\18
184.6154 |
3\13
189.4736 |
5\21
193.5484 |
2\8
200 |
5\19
206.89655 |
3\11
211.7647 |
4\14
218.18 |
Si# | Β# | 5\18
230.7692 |
4\13
252.6316 |
7\21
270.9677 |
3\8
300 |
8\19
331.0345 |
5\11
352.9412 |
7\14
381.81 |
Dob | Γb | 6\18
276.9231 |
6\21
232.2581 |
2\8
200 |
4\19
165.5172 |
2\11
141.1765 |
2\14
109.09 | |
Do | Γ | 7\18
323.0769 |
5\13
315.7895 |
8\21
309.6774 |
3\8
300 |
7\19
289.6552 |
4\11
282.3529 |
5\14
272.72 |
Do# | Γ# | 8\18
369.2308 |
6\13
378.9474 |
10\21
387.0968 |
4\8
400 |
10\19
413.7931 |
6\11
423.5294 |
8\14
436.36 |
Reb | Δb | 10\18
461.5385 |
7\13
442.1053 |
11\21
425.80645 |
9\19
372.4138 |
5\11
352.9412 |
6\14
327.27 | |
Re | Δ | 11\18
507.6923 |
8\13
505.2632 |
13\21
503.2259 |
5\8
500 |
12\19
496.5517 |
7\11
494.11765 |
9\14
490.90 |
Re# | Δ# | 12\18
553.84615 |
9\13
568.42105 |
15\21
580.6452 |
6\8
600 |
15\19
620.6897 |
9\11
635.2941 |
12\14
654.54 |
Mib | Εb | 14\18
646.15385 |
10\13
631.57895 |
16\21
619.3548 |
14\19
579.3103 |
8\11
564.7059 |
10\14
545.45 | |
Mi | Ε | 15\18
692.3077 |
11\13
694.7368 |
18\21
696.7742 |
7\8
700 |
17\19
703.4483 |
10\11
705.88235 |
13\14
709.09 |
Mi# | Ε# | 16\18
738.4615 |
12\13
757.8947 |
20\21
774.19355 |
8\8
800 |
20\19
827.5862 |
12\11
847.0588 |
16\14
872.72 |
Lab | Ϛb/Ϝb | 17\18
784.6154 |
19\21
735.4839 |
7\8
700 |
16\19
662.069 |
9\11
635.2941 |
11\14
600 | |
La | Ϛ/Ϝ | 18\18
830.7692 |
13\13
821.0526 |
21\21
812.9032 |
8\8
800 |
19\19
786.2069 |
11\11
776.4706 |
14\14
763.63 |
La# | Ϛ#/Ϝ# | 19\18
876.9231 |
14\13
884.2105 |
23\21
890.3226 |
9\8
900 |
22\19
910.3448 |
13\11
917.6471 |
17\14
927.27 |
Sib | Ζb | 21\18
969.2308 |
15\13
947.3684 |
24\21
929.0323 |
21\19
868.9655 |
12\11
847.0588 |
15\14
818.18 | |
Si | Ζ | 22\18
1015.3846 |
16\13
1010.5263 |
26\21
1006.4516 |
10\8
1000 |
24\19
993.10345 |
14\11
988.2353 |
18\14
981.81 |
Si# | Ζ# | 23\18
1061.5385 |
17\13
1071.6842 |
28\21
1083.871 |
11\8
1100 |
27\19
1117.2414 |
16\11
1129.4118 |
21\14
1145.45 |
Dob | Ηb | 24\18
1107.6923 |
27\21
1045.1613 |
10\8
1000 |
23\19
951.7241 |
13\11
917.6471 |
16\14
872.72 | |
Do | Η | 25\18
1153.84615 |
18\13
1136.8421 |
29\21
1122.58065 |
11\8
1100 |
26\19
1075.8621 |
15\11
1052.8235 |
19\14
1036.36 |
Do# | Η# | 26\18
1200 |
19\13
1200 |
31\21
1200 |
12\8
1200 |
29\19
1200 |
17\11
1200 |
22\14
1200 |
Reb | Θb | 28\18
1292.3077 |
20\13
1263.1579 |
32\21
1238.7097 |
28\19
1158.6207 |
16\11
1129.4118 |
20\14
1090.90 | |
Re | Θ | 29\18
1338.4615 |
21\13
1326.3158 |
34\21
1316.129 |
13\8
1300 |
31\19
1282.7586 |
18\11
1270.5882 |
23\14
1254.54 |
Re# | Θ# | 30\18
1384.6154 |
22\13
1389.4737 |
36\21
1393.5484 |
14\8
1400 |
34\19
1406.89655 |
20\11
1411.7647 |
26\14
1418.18 |
Mib | Ιb | 32\18
1476.9231 |
23\13
1452.6316 |
37\21
1432.2581 |
33\19
1365.5172 |
19\11
1341.1765 |
24\14
1309.09 | |
Mi | Ι | 33\18
1523.0769 |
24\13
1515.7895 |
39\21
1509.6774 |
15\8
1500 |
36\19
1489.6551 |
21\11
1482.3529 |
27\14
1472.72 |
Mi# | Ι# | 34\18
1569.2308 |
25\13
1578.9474 |
41\21
1587.0968 |
16\8
1600 |
39\19
1613.7931 |
23\11
1623.5294 |
30\14
1636.36 |
Lab | Αb | 35\18
1615.3846 |
40\21
1548.3871 |
15\8
1500 |
35\19
1448.2859 |
20\11
1411.7647 |
25\14
1363.63 | |
La | Α | 36\18
1661.5385 |
26\13
1642.1053 |
42\21
1625.80645 |
16\8
1600 |
38\19
1572.4138 |
22\11
1552.9412 |
28\14
1527.27 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Diatonic | Oriole, Annapolis | 18eds | 13eds | 21eds | 8eds | 19eds | 11eds | 14eds |
La# | Α# | 1\18
44.4 |
1\13
61.5385 |
2\21
76.1905 |
1\8
100 |
3\19
126.3158 |
2\11
145.45 |
3\14
171.4286 |
Sib | Βb | 3\18
133.3 |
2\13
123.0769 |
3\21
114.2857 |
2\19
84.2105 |
1\11
72.72 |
1\14
57.1429 | |
Si | Β | 4\18
177.7 |
3\13
184.6154 |
5\21
190.4762 |
2\8
200 |
5\19
210.5263 |
3\11
218.18 |
4\14
228.5714 |
Si# | Β# | 5\18
222.2 |
4\13
246.15385 |
7\21
266.6 |
3\8
300 |
8\19
336.8421 |
5\11
363.63 |
7\14
400 |
Dob | Γb | 6\18
266.6 |
6\21
228.5714 |
2\8
200 |
4\19
168.42105 |
2\11
145.45 |
2\14
114.2857 | |
Do | Γ | 7\18
311.1 |
5\13
307.6923 |
8\21
304.7619 |
3\8
300 |
7\19
294.7368 |
4\11
290.90 |
5\14
285.7143 |
Do# | Γ# | 8\18
355.5 |
6\13
369.2308 |
10\21
380.9524 |
4\8
400 |
10\19
421.0526 |
6\11
436.36 |
8\14
457.1429 |
Reb | Δb | 10\18
444.4 |
7\13
430.7692 |
11\21
419.0476 |
9\19
378.9474 |
5\11
363.63 |
6\14
342.8571 | |
Re | Δ | 11\18
488.8 |
8\13
492.3077 |
13\21
495.2381 |
5\8
500 |
12\19
505.2632 |
7\11
509.09 |
9\14
514.2857 |
Re# | Δ# | 12\18
533.3 |
9\13
553.84615 |
15\21
571.4286 |
6\8
600 |
15\19
631.42105 |
9\11
654.54 |
12\14
685.7143 |
Mib | Εb | 14\18
622.2 |
10\13
615.3846 |
16\21
609.5238 |
14\19
589.4737 |
8\11
581.81 |
10\14
571.4286 | |
Mi | Ε | 15\18
666.6 |
11\13
676.9231 |
18\21
685.7143 |
7\8
700 |
17\19
715.7895 |
10\11
727.27 |
13\14
742.8571 |
Mi# | Ε# | 16\18
711.1 |
12\13
738.4615 |
20\21
761.9048 |
8\8
800 |
20\19
842.1053 |
12\11
872.72 |
16\14
914.2857 |
Lab | Ϛb/Ϝb | 17\18
755.5 |
19\21
723.8095 |
7\8
700 |
16\19
673.6842 |
8\11
581.81 |
11\14
628.5714 | |
La | Ϛ/Ϝ | 800 | ||||||
La# | Ϛ#/Ϝ# | 19\18
844.4 |
14\13
861.5385 |
23\21
876.1905 |
9\8
900 |
22\19
926.3158 |
13\11
945.45 |
17\14
971.4286 |
Sib | Ζb | 21\18
933.3 |
15\13
923.0769 |
24\21
914.2857 |
21\19
884.2105 |
12\11
872.72 |
15\14
857.1429 | |
Si | Ζ | 22\18
977.7 |
16\13
984.6154 |
26\21
990.4762 |
10\8
1000 |
24\19
1010.5263 |
14\11
1018.18 |
18\14
1028.5714 |
Si# | Ζ# | 23\18
1022.2 |
17\13
1046.15385 |
28\21
1066.6 |
11\8
1100 |
27\19
1136.8421 |
16\11
1163.63 |
21\14
1200 |
Dob | Ηb | 24\18
1066.6 |
27\21
1028.5714 |
10\8
1000 |
23\19
968.42105 |
13\11
945.45 |
16\14
914.2857 | |
Do | Η | 25\18
1111.1 |
18\13
1107.6923 |
29\21
1104.7619 |
11\8
1100 |
26\19
1094.7368 |
15\11
1090.90 |
19\14
1085.7143 |
Do# | Η# | 26\18
1155.5 |
19\13
1169.2308 |
31\21
1180.9524 |
12\8
1200 |
29\19
1221.0526 |
17\11
1236.36 |
22\14
1257.1429 |
Reb | Θb | 28\18
1244.4 |
20\13
1230.7692 |
32\21
1219.0476 |
28\19
1178.9474 |
16\11
1163.63 |
20\14
1142.8571 | |
Re | Θ | 29\18
1288.8 |
21\13
1292.3077 |
34\21
1295.2381 |
13\8
1300 |
31\19
1305.2632 |
18\11
1309.09 |
23\14
1314.2857 |
Re# | Θ# | 30\18
1333.3 |
22\13
1187.9238 |
36\21
1371.4286 |
14\8
1400 |
34\19
1431.42105 |
20\11
1454.54 |
26\14
1485.7143 |
Mib | Ιb | 32\18
1422.2 |
23\13
1415.3846 |
37\21
1409.5238 |
33\19
1389.4737 |
19\11
1381.81 |
24\14
1371.4286 | |
Mi | Ι | 33\18
1466.6 |
24\13
1476.9231 |
39\21
1485.7143 |
15\8
1500 |
36\19
1515.7895 |
21\11
1527.27 |
27\14
1542.8571 |
Mi# | Ι# | 34\18
1511.1 |
25\13
1538.4615 |
41\21
1561.9048 |
16\8
1600 |
39\19
1642.1053 |
23\11
1672.72 |
30\14
1714.2857 |
Lab | Αb | 35\18
1555.5 |
40\21
1523.8095 |
15\8
1500 |
35\19
1473.6842 |
20\11
1454.54 |
25\14
1428.5714 | |
La | Α | 1600 |
Intervals
Generators | Sixth notation | Interval category name | Generators | Notation of sixth inverse | Interval category name |
---|---|---|---|---|---|
The 5-note MOS has the following intervals (from some root): | |||||
0 | La | perfect sixth (minor sixth) | 0 | La | perfect unison |
1 | Re | perfect fourth | -1 | Do | minor third |
2 | Si | major second | -2 | Mib | diminished fifth |
3 | Mi | perfect fifth | -3 | Sib | minor second |
4 | Do# | major third | -4 | Reb | diminished fourth |
The chromatic 8-note MOS also has the following intervals (from some root): | |||||
5 | La# | augmented unison (chroma) | -5 | Lab | diminished sixth |
6 | Re# | augmented fourth | -6 | Dob | diminished third |
7 | Si# | augmented second | -7 | Mibb | doubly diminished fifth |
Genchain
The generator chain for this scale is as follows:
Sibb | Mibb | Dob | Lab | Reb | Sib | Mib | Do | La | Re | Si | Mi | Do# | La# | Re# | Si# | Mi# |
d2 | dd5 | d3 | d6 | d4 | m2 | d5 | m3 | P1 | P4 | M2 | P5 | M3 | A1 | A4 | A2 | A5 |
Modes
The mode names are based on the modes of the diatonic scale , in order of size:
Mode | Scale | UDP | Interval type | |||
---|---|---|---|---|---|---|
name | pattern | notation | 2nd | 3rd | 4th | 5th |
Hindu | LLsLs | 4|0 | M | M | P | P |
Minor | LsLLs | 3|1 | M | m | P | P |
Half diminished | LsLsL | 2|2 | M | m | P | d |
Diminished | sLLsL | 1|3 | m | m | P | d |
Altered | sLsLL | 0|4 | m | m | d | d |
Temperaments
The most basic rank-2 temperament interpretation of this diatonic is Aeolianic, which has septimal 6:7:9 or pental 10:12:15 chords spelled root-(p-1g)-(3g)
(p = the minor sixth, g = the approximate 4/3). The name "Aeolianic" comes from the Aeolian minor mode having the minor sixth as its characteristic interval.
Aeolianic-Meantone
Subgroup: 8/5.4/3.3/2
POL2 generator: ~6/5 = 308.3057
Mapping: [⟨1 1 2], ⟨0 -1 -3]]
Optimal ET sequence: 5ed8/5, 8ed8/5, 13ed8/5
Scale tree
The spectrum looks like this:
Generator
(bright) |
Normalised | ed8\12 (→ed2\3) | L | s | L/s | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
Chroma-positive | Chroma-negative | Chroma-positive | Chroma-negative | |||||||
3\5 | 514.286 | 342.857 | 480 | 320 | 1 | 1 | 1.000 | Equalised | ||
17\28 | 510 | 330 | 485.714 | 314.286 | 6 | 5 | 1.200 | |||
48\79 | 509.7345 | 329.2035 | 486.076 | 313.924 | 17 | 14 | 1.214 | |||
31\51 | 509.589 | 328.767 | 486.2745 | 313.7255 | 11 | 9 | 1.222 | |||
14\23 | 509.09 | 327.27 | 486.9565 | 313.0435 | 5 | 4 | 1.250 | |||
39\64 | 508.966 | 326.087 | 487.5 | 312.5 | 14 | 11 | 1.273 | |||
25\41 | 508.475 | 325.424 | 487.805 | 312.195 | 9 | 7 | 1.286 | |||
36\59 | 508.235 | 324.706 | 488.136 | 311.864 | 13 | 10 | 1.300 | |||
11\18 | 507.692 | 323.077 | 488.8 | 311.1 | 4 | 3 | 1.333 | |||
63\103 | 507.383 | 322.148 | 489.32 | 310.68 | 23 | 17 | 1.353 | |||
52\85 | 507.317 | 321.951 | 489.412 | 310.588 | 19 | 14 | 1.357 | |||
41\67 | 507.2165 | 321.6495 | 489.552 | 310.448 | 15 | 11 | 1.364 | |||
30\49 | 507.062 | 321.127 | 489.796 | 310.204 | 11 | 8 | 1.375 | |||
19\31 | 506.6 | 320 | 490.323 | 309.678 | 7 | 5 | 1.400 | |||
46\75 | 506.422 | 319.266 | 490.6 | 309.3 | 17 | 12 | 1.417 | |||
27\44 | 506.25 | 318.75 | 490.90 | 309.09 | 10 | 7 | 1.429 | |||
35\57 | 506.024 | 318.072 | 491.228 | 308.712 | 13 | 9 | 1.444 | |||
43\70 | 505.882 | 317.647 | 491.429 | 308.571 | 16 | 11 | 1.4545 | |||
51\83 | 505.785 | 317.355 | 491.566 | 308.434 | 19 | 13 | 1.4615 | |||
8\13 | 505.263 | 315.79 | 492.308 | 307.692 | 3 | 2 | 1.500 | Aeolianic-Meantone starts here | ||
45\73 | 504.673 | 314.019 | 493.151 | 306.849 | 17 | 11 | 1.5455 | |||
37\60 | 504.54 | 313.63 | 493.3 | 306.6 | 14 | 9 | 1.556 | |||
29\47 | 504.348 | 313.043 | 493.617 | 306.383 | 11 | 7 | 1.571 | |||
21\34 | 504 | 312 | 494.118 | 305.882 | 8 | 5 | 1.600 | |||
34\55 | 503.703 | 311.1 | 494.54 | 305.45 | 13 | 8 | 1.625 | |||
47\76 | 503.571 | 310.714 | 494.737 | 305.263 | 18 | 11 | 1.636 | |||
13\21 | 503.226 | 309.678 | 495.238 | 304.762 | 5 | 3 | 1.667 | |||
31\50 | 502.702 | 308.108 | 496 | 304 | 12 | 7 | 1.714 | |||
49\79 | 502.564 | 307.692 | 496.2025 | 303.7975 | 19 | 11 | 1.727 | |||
18\29 | 502.326 | 306.977 | 496.552 | 303.448 | 7 | 4 | 1.750 | |||
23\37 | 501.81 | 305.45 | 497.297 | 302.702 | 9 | 5 | 1.800 | |||
28\45 | 501.492 | 304.478 | 497.7 | 302.2 | 11 | 6 | 1.833 | |||
33\53 | 501.265 | 303.797 | 498.113 | 301.887 | 13 | 7 | 1.857 | |||
38\61 | 501.09 | 303.297 | 498.361 | 301.639 | 15 | 8 | 1.875 | |||
43\69 | 500.971 | 302.913 | 498.551 | 301.449 | 17 | 9 | 1.889 | |||
5\8 | 500 | 300 | 500 | 300 | 2 | 1 | 2.000 | Aeolianic-Meantone ends, Aeolianic-Pythagorean begins | ||
42\67 | 499.01 | 297.03 | 501.4925 | 298.5075 | 17 | 8 | 2.125 | |||
37\59 | 498.876 | 296.629 | 501.695 | 298.305 | 15 | 7 | 2.143 | |||
32\51 | 498.701 | 296.104 | 501.961 | 298.039 | 13 | 6 | 2.167 | |||
27\43 | 498.461 | 295.385 | 502.326 | 297.674 | 11 | 5 | 2.200 | |||
22\35 | 498.113 | 294.34 | 502.857 | 297.143 | 9 | 4 | 2.250 | |||
39\62 | 497.872 | 293.617 | 503.226 | 296.774 | 16 | 7 | 2.286 | |||
17\27 | 497.561 | 292.683 | 503.703 | 296.296 | 7 | 3 | 2.333 | |||
29\46 | 497.143 | 291.429 | 504.348 | 295.652 | 12 | 5 | 2.400 | |||
41\65 | 496.96 | 290.90 | 504.615 | 295.385 | 17 | 7 | 2.429 | |||
12\19 | 496.552 | 289.655 | 505.263 | 294.737 | 5 | 2 | 2.500 | |||
31\49 | 496 | 288 | 506.122 | 293.878 | 13 | 5 | 2.600 | |||
50\79 | 495.868 | 287.633 | 506.329 | 293.671 | 21 | 8 | 2.625 | |||
19\30 | 495.652 | 286.957 | 506.6 | 293.3 | 8 | 3 | 2.667 | |||
26\41 | 495.238 | 285.714 | 507.317 | 292.683 | 11 | 4 | 2.750 | |||
33\52 | 495 | 285 | 507.692 | 292.308 | 14 | 5 | 2.800 | |||
40\63 | 494.536 | 284.536 | 507.9365 | 292.0635 | 17 | 6 | 2.833 | |||
47\74 | 494.737 | 284.211 | 508.108 | 291.891 | 20 | 7 | 2.857 | |||
54\85 | 494.6565 | 283.9695 | 508.235 | 291.765 | 23 | 8 | 2.875 | |||
61\96 | 494.594 | 283.783 | 508.3 | 291.6 | 26 | 9 | 2.889 | |||
7\11 | 494.118 | 282.353 | 509.09 | 290.90 | 3 | 1 | 3.000 | Aeolianic-Pythagorean ends, Aeolianic-Superpyth begins | ||
65\102 | 493.671 | 281.013 | 509.804 | 290.196 | 28 | 9 | 3.111 | |||
58\91 | 493.617 | 280.851 | 509.89 | 290.11 | 25 | 8 | 3.125 | |||
51\80 | 493.548 | 280.645 | 510 | 290 | 22 | 7 | 3.143 | |||
44\69 | 493.458 | 280.374 | 510.145 | 289.855 | 19 | 6 | 3.167 | |||
37\58 | 493.3 | 280 | 510.345 | 289.655 | 16 | 5 | 3.200 | |||
30\47 | 493.151 | 279.452 | 510.638 | 289.362 | 13 | 4 | 3.250 | |||
23\36 | 492.857 | 278.571 | 511.1 | 288.8 | 10 | 3 | 3.333 | |||
16\25 | 492.308 | 276.923 | 512 | 288 | 7 | 2 | 3.500 | |||
25\39 | 491.803 | 275.41 | 512.8205 | 287.1795 | 11 | 3 | 3.667 | |||
34\53 | 491.566 | 274.699 | 513.2075 | 286.7925 | 15 | 4 | 3.750 | |||
43\67 | 491.429 | 274.286 | 513.433 | 286.567 | 19 | 5 | 3.800 | |||
52\81 | 491.339 | 274.016 | 513.58 | 286.42 | 23 | 6 | 3.833 | |||
61\95 | 491.275 | 273.825 | 513.684 | 286.316 | 27 | 7 | 3.857 | |||
9\14 | 490.90 | 272.72 | 514.286 | 285.714 | 4 | 1 | 4.000 | |||
47\73 | 490.435 | 271.304 | 515.0685 | 284.3315 | 21 | 5 | 4.200 | |||
38\59 | 490.323 | 270.968 | 515.254 | 284.746 | 17 | 4 | 4.250 | |||
29\45 | 490.141 | 270.422 | 515.5 | 284.4 | 13 | 3 | 4.333 | |||
20\31 | 489.795 | 269.388 | 516.129 | 283.871 | 9 | 2 | 4.500 | |||
31\48 | 489.474 | 268.421 | 516.6 | 283.3 | 14 | 3 | 4.667 | |||
42\65 | 489.32 | 267.961 | 516.923 | 283.077 | 19 | 4 | 4.750 | |||
11\17 | 488.8 | 266.6 | 517.647 | 282.353 | 5 | 1 | 5.000 | Aeolianic-Superpyth ends | ||
35\54 | 488.372 | 265.116 | 518.518 | 281.481 | 16 | 3 | 5.333 | |||
24\37 | 488.136 | 264.407 | 518.918 | 281.081 | 11 | 2 | 5.500 | |||
37\57 | 487.912 | 263.736 | 519.298 | 280.702 | 17 | 3 | 5.667 | |||
13\20 | 487.5 | 262.2 | 520 | 280 | 6 | 1 | 6.000 | |||
2\3 | 480 | 240 | 533.3 | 266.6 | 1 | 0 | → inf | Paucitonic |