3L 2s (8/5-equivalent)
↖ 2L 1s⟨8/5⟩ | ↑ 3L 1s⟨8/5⟩ | 4L 1s⟨8/5⟩ ↗ |
← 2L 2s⟨8/5⟩ | 3L 2s (8/5-equivalent) | 4L 2s⟨8/5⟩ → |
↙ 2L 3s⟨8/5⟩ | ↓ 3L 3s⟨8/5⟩ | 4L 3s⟨8/5⟩ ↘ |
┌╥╥┬╥┬┐ │║║│║││ │││││││ └┴┴┴┴┴┘
sLsLL
3L 2s<8/5> is a minor sixth-repeating MOS scale. The notation "<8/5>" means the period of the MOS is 8/5, disambiguating it from octave-repeating 3L 2s.
The generator range is 240 to 342.9 cents, placing it on the diatonic minor third, usually representing a minor third of some type (like 6/5). The bright (chroma-positive) generator is, however, its minor sixth complement (480 to 514.3 cents).
Because this is a minor sixth-repeating scale, each tone has an 8/5 minor sixth above it. The scale has one major chord, one minor chord and three diminished chords. This scale also has two diminished 7th chords, making it a warped melodic minor scale.
Basic 3L 2s<8/5> is in 8ed8/5, which is a very good minor sixth-based equal tuning similar to 12edo.
Notation
There are 2 main ways to notate this scale. One method uses a simple sixth repeating notation consisting of 5 naturals (La, Si, Do, Re, Mi). Given that 1-7/6-3/2 is minor sixth-equivalent to a tone cluster of 1-16/15-7/6, it may be more convenient to notate these diatonic scales as repeating at the double sixth (diminished eleventh~tenth), however it does make navigating the genchain harder. This way, 3/2 is its own pitch class, distinct from 16\15. Notating this way produces a tenth which is the Dorian mode of Annapolis[6L 4s] or Oriole[6L 4s]. Since there are exactly 10 naturals in double sixth notation, Greek numerals 1-10 may be used.
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Diatonic | Oriole, Annapolis | 18eds | 13eds | 21eds | 8eds | 19eds | 11eds | 14eds |
La# | Α# | 1\18
46.15385 |
1\13
63.1579 |
2\21
77.41935 |
1\8
100 |
3\19
124.1379 |
2\11
141.1765 |
3\14
163.63 |
Sib | Βb | 3\18
138.4615 |
2\13
126.3158 |
3\21
116.129 |
2\19
82.7586 |
1\11
70.5882 |
1\14
54.54 | |
Si | Β | 4\18
184.6154 |
3\13
189.4736 |
5\21
193.5484 |
2\8
200 |
5\19
206.89655 |
3\11
211.7647 |
4\14
218.18 |
Si# | Β# | 5\18
230.7692 |
4\13
252.6316 |
7\21
270.9677 |
3\8
300 |
8\19
331.0345 |
5\11
352.9412 |
7\14
381.81 |
Dob | Γb | 6\18
276.9231 |
6\21
232.2581 |
2\8
200 |
4\19
165.5172 |
2\11
141.1765 |
2\14
109.09 | |
Do | Γ | 7\18
323.0769 |
5\13
315.7895 |
8\21
309.6774 |
3\8
300 |
7\19
289.6552 |
4\11
282.3529 |
5\14
272.72 |
Do# | Γ# | 8\18
369.2308 |
6\13
378.9474 |
10\21
387.0968 |
4\8
400 |
10\19
413.7931 |
6\11
423.5294 |
8\14
436.36 |
Reb | Δb | 10\18
461.5385 |
7\13
442.1053 |
11\21
425.80645 |
9\19
372.4138 |
5\11
352.9412 |
6\14
327.27 | |
Re | Δ | 11\18
507.6923 |
8\13
505.2632 |
13\21
503.2259 |
5\8
500 |
12\19
496.5517 |
7\11
494.11765 |
9\14
490.90 |
Re# | Δ# | 12\18
553.84615 |
9\13
568.42105 |
15\21
580.6452 |
6\8
600 |
15\19
620.6897 |
9\11
635.2941 |
12\14
654.54 |
Mib | Εb | 14\18
646.15385 |
10\13
631.57895 |
16\21
619.3548 |
14\19
579.3103 |
8\11
564.7059 |
10\14
545.45 | |
Mi | Ε | 15\18
692.3077 |
11\13
694.7368 |
18\21
696.7742 |
7\8
700 |
17\19
703.4483 |
10\11
705.88235 |
13\14
709.09 |
Mi# | Ε# | 16\18
738.4615 |
12\13
757.8947 |
20\21
774.19355 |
8\8
800 |
20\19
827.5862 |
12\11
847.0588 |
16\14
872.72 |
Lab | Ϛb/Ϝb | 17\18
784.6154 |
19\21
735.4839 |
7\8
700 |
16\19
662.069 |
9\11
635.2941 |
11\14
600 | |
La | Ϛ/Ϝ | 18\18
830.7692 |
13\13
821.0526 |
21\21
812.9032 |
8\8
800 |
19\19
786.2069 |
11\11
776.4706 |
14\14
763.63 |
La# | Ϛ#/Ϝ# | 19\18
876.9231 |
14\13
884.2105 |
23\21
890.3226 |
9\8
900 |
22\19
910.3448 |
13\11
917.6471 |
17\14
927.27 |
Sib | Ζb | 21\18
969.2308 |
15\13
947.3684 |
24\21
929.0323 |
21\19
868.9655 |
12\11
847.0588 |
15\14
818.18 | |
Si | Ζ | 22\18
1015.3846 |
16\13
1010.5263 |
26\21
1006.4516 |
10\8
1000 |
24\19
993.10345 |
14\11
988.2353 |
18\14
981.81 |
Si# | Ζ# | 23\18
1061.5385 |
17\13
1071.6842 |
28\21
1083.871 |
11\8
1100 |
27\19
1117.2414 |
16\11
1129.4118 |
21\14
1145.45 |
Dob | Ηb | 24\18
1107.6923 |
27\21
1045.1613 |
10\8
1000 |
23\19
951.7241 |
13\11
917.6471 |
16\14
872.72 | |
Do | Η | 25\18
1153.84615 |
18\13
1136.8421 |
29\21
1122.58065 |
11\8
1100 |
26\19
1075.8621 |
15\11
1052.8235 |
19\14
1036.36 |
Do# | Η# | 26\18
1200 |
19\13
1200 |
31\21
1200 |
12\8
1200 |
29\19
1200 |
17\11
1200 |
22\14
1200 |
Reb | Θb | 28\18
1292.3077 |
20\13
1263.1579 |
32\21
1238.7097 |
28\19
1158.6207 |
16\11
1129.4118 |
20\14
1090.90 | |
Re | Θ | 29\18
1338.4615 |
21\13
1326.3158 |
34\21
1316.129 |
13\8
1300 |
31\19
1282.7586 |
18\11
1270.5882 |
23\14
1254.54 |
Re# | Θ# | 30\18
1384.6154 |
22\13
1389.4737 |
36\21
1393.5484 |
14\8
1400 |
34\19
1406.89655 |
20\11
1411.7647 |
26\14
1418.18 |
Mib | Ιb | 32\18
1476.9231 |
23\13
1452.6316 |
37\21
1432.2581 |
33\19
1365.5172 |
19\11
1341.1765 |
24\14
1309.09 | |
Mi | Ι | 33\18
1523.0769 |
24\13
1515.7895 |
39\21
1509.6774 |
15\8
1500 |
36\19
1489.6551 |
21\11
1482.3529 |
27\14
1472.72 |
Mi# | Ι# | 34\18
1569.2308 |
25\13
1578.9474 |
41\21
1587.0968 |
16\8
1600 |
39\19
1613.7931 |
23\11
1623.5294 |
30\14
1636.36 |
Lab | Αb | 35\18
1615.3846 |
40\21
1548.3871 |
15\8
1500 |
35\19
1448.2859 |
20\11
1411.7647 |
25\14
1363.63 | |
La | Α | 36\18
1661.5385 |
26\13
1642.1053 |
42\21
1625.80645 |
16\8
1600 |
38\19
1572.4138 |
22\11
1552.9412 |
28\14
1527.27 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Diatonic | Oriole, Annapolis | 18eds | 13eds | 21eds | 8eds | 19eds | 11eds | 14eds |
La# | Α# | 1\18
44.4 |
1\13
61.5385 |
2\21
76.1905 |
1\8
100 |
3\19
126.3158 |
2\11
145.45 |
3\14
171.4286 |
Sib | Βb | 3\18
133.3 |
2\13
123.0769 |
3\21
114.2857 |
2\19
84.2105 |
1\11
72.72 |
1\14
57.1429 | |
Si | Β | 4\18
177.7 |
3\13
184.6154 |
5\21
190.4762 |
2\8
200 |
5\19
210.5263 |
3\11
218.18 |
4\14
228.5714 |
Si# | Β# | 5\18
222.2 |
4\13
246.15385 |
7\21
266.6 |
3\8
300 |
8\19
336.8421 |
5\11
363.63 |
7\14
400 |
Dob | Γb | 6\18
266.6 |
6\21
228.5714 |
2\8
200 |
4\19
168.42105 |
2\11
145.45 |
2\14
114.2857 | |
Do | Γ | 7\18
311.1 |
5\13
307.6923 |
8\21
304.7619 |
3\8
300 |
7\19
294.7368 |
4\11
290.90 |
5\14
285.7143 |
Do# | Γ# | 8\18
355.5 |
6\13
369.2308 |
10\21
380.9524 |
4\8
400 |
10\19
421.0526 |
6\11
436.36 |
8\14
457.1429 |
Reb | Δb | 10\18
444.4 |
7\13
430.7692 |
11\21
419.0476 |
9\19
378.9474 |
5\11
363.63 |
6\14
342.8571 | |
Re | Δ | 11\18
488.8 |
8\13
492.3077 |
13\21
495.2381 |
5\8
500 |
12\19
505.2632 |
7\11
509.09 |
9\14
514.2857 |
Re# | Δ# | 12\18
533.3 |
9\13
553.84615 |
15\21
571.4286 |
6\8
600 |
15\19
631.42105 |
9\11
654.54 |
12\14
685.7143 |
Mib | Εb | 14\18
622.2 |
10\13
615.3846 |
16\21
609.5238 |
14\19
589.4737 |
8\11
581.81 |
10\14
571.4286 | |
Mi | Ε | 15\18
666.6 |
11\13
676.9231 |
18\21
685.7143 |
7\8
700 |
17\19
715.7895 |
10\11
727.27 |
13\14
742.8571 |
Mi# | Ε# | 16\18
711.1 |
12\13
738.4615 |
20\21
761.9048 |
8\8
800 |
20\19
842.1053 |
12\11
872.72 |
16\14
914.2857 |
Lab | Ϛb/Ϝb | 17\18
755.5 |
19\21
723.8095 |
7\8
700 |
16\19
673.6842 |
8\11
581.81 |
11\14
628.5714 | |
La | Ϛ/Ϝ | 800 | ||||||
La# | Ϛ#/Ϝ# | 19\18
844.4 |
14\13
861.5385 |
23\21
876.1905 |
9\8
900 |
22\19
926.3158 |
13\11
945.45 |
17\14
971.4286 |
Sib | Ζb | 21\18
933.3 |
15\13
923.0769 |
24\21
914.2857 |
21\19
884.2105 |
12\11
872.72 |
15\14
857.1429 | |
Si | Ζ | 22\18
977.7 |
16\13
984.6154 |
26\21
990.4762 |
10\8
1000 |
24\19
1010.5263 |
14\11
1018.18 |
18\14
1028.5714 |
Si# | Ζ# | 23\18
1022.2 |
17\13
1046.15385 |
28\21
1066.6 |
11\8
1100 |
27\19
1136.8421 |
16\11
1163.63 |
21\14
1200 |
Dob | Ηb | 24\18
1066.6 |
27\21
1028.5714 |
10\8
1000 |
23\19
968.42105 |
13\11
945.45 |
16\14
914.2857 | |
Do | Η | 25\18
1111.1 |
18\13
1107.6923 |
29\21
1104.7619 |
11\8
1100 |
26\19
1094.7368 |
15\11
1090.90 |
19\14
1085.7143 |
Do# | Η# | 26\18
1155.5 |
19\13
1169.2308 |
31\21
1180.9524 |
12\8
1200 |
29\19
1221.0526 |
17\11
1236.36 |
22\14
1257.1429 |
Reb | Θb | 28\18
1244.4 |
20\13
1230.7692 |
32\21
1219.0476 |
28\19
1178.9474 |
16\11
1163.63 |
20\14
1142.8571 | |
Re | Θ | 29\18
1288.8 |
21\13
1292.3077 |
34\21
1295.2381 |
13\8
1300 |
31\19
1305.2632 |
18\11
1309.09 |
23\14
1314.2857 |
Re# | Θ# | 30\18
1333.3 |
22\13
1187.9238 |
36\21
1371.4286 |
14\8
1400 |
34\19
1431.42105 |
20\11
1454.54 |
26\14
1485.7143 |
Mib | Ιb | 32\18
1422.2 |
23\13
1415.3846 |
37\21
1409.5238 |
33\19
1389.4737 |
19\11
1381.81 |
24\14
1371.4286 | |
Mi | Ι | 33\18
1466.6 |
24\13
1476.9231 |
39\21
1485.7143 |
15\8
1500 |
36\19
1515.7895 |
21\11
1527.27 |
27\14
1542.8571 |
Mi# | Ι# | 34\18
1511.1 |
25\13
1538.4615 |
41\21
1561.9048 |
16\8
1600 |
39\19
1642.1053 |
23\11
1672.72 |
30\14
1714.2857 |
Lab | Αb | 35\18
1555.5 |
40\21
1523.8095 |
15\8
1500 |
35\19
1473.6842 |
20\11
1454.54 |
25\14
1428.5714 | |
La | Α | 1600 |
Intervals
Generators | Sixth notation | Interval category name | Generators | Notation of sixth inverse | Interval category name |
---|---|---|---|---|---|
The 5-note MOS has the following intervals (from some root): | |||||
0 | La | perfect sixth (minor sixth) | 0 | La | perfect unison |
1 | Re | perfect fourth | -1 | Do | minor third |
2 | Si | major second | -2 | Mib | diminished fifth |
3 | Mi | perfect fifth | -3 | Sib | minor second |
4 | Do# | major third | -4 | Reb | diminished fourth |
The chromatic 8-note MOS also has the following intervals (from some root): | |||||
5 | La# | augmented unison (chroma) | -5 | Lab | diminished sixth |
6 | Re# | augmented fourth | -6 | Dob | diminished third |
7 | Si# | augmented second | -7 | Mibb | doubly diminished fifth |
Genchain
The generator chain for this scale is as follows:
Sibb | Mibb | Dob | Lab | Reb | Sib | Mib | Do | La | Re | Si | Mi | Do# | La# | Re# | Si# | Mi# |
d2 | dd5 | d3 | d6 | d4 | m2 | d5 | m3 | P1 | P4 | M2 | P5 | M3 | A1 | A4 | A2 | A5 |
Modes
The mode names are based on the modes of the diatonic scale , in order of size:
Mode | Scale | UDP | Interval type | |||
---|---|---|---|---|---|---|
name | pattern | notation | 2nd | 3rd | 4th | 5th |
Hindu | LLsLs | 4|0 | M | M | P | P |
Minor | LsLLs | 3|1 | M | m | P | P |
Half diminished | LsLsL | 2|2 | M | m | P | d |
Diminished | sLLsL | 1|3 | m | m | P | d |
Altered | sLsLL | 0|4 | m | m | d | d |
Temperaments
The most basic rank-2 temperament interpretation of this diatonic is Aeolianic, which has septimal 6:7:9 or pental 10:12:15 chords spelled root-(p-1g)-(3g)
(p = the minor sixth, g = the approximate 4/3). The name "Aeolianic" comes from the Aeolian minor mode having the minor sixth as its characteristic interval.
Aeolianic-Meantone
Subgroup: 8/5.4/3.3/2
POL2 generator: ~6/5 = 308.3057
Mapping: [⟨1 1 2], ⟨0 -1 -3]]
Optimal ET sequence: 5ed8/5, 8ed8/5, 13ed8/5
Scale tree
The spectrum looks like this:
Generator
(bright) |
Normalised | ed8\12 (→ed2\3) | L | s | L/s | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
Chroma-positive | Chroma-negative | Chroma-positive | Chroma-negative | |||||||
3\5 | 514.286 | 342.857 | 480 | 320 | 1 | 1 | 1.000 | Equalised | ||
17\28 | 510 | 330 | 485.714 | 314.286 | 6 | 5 | 1.200 | |||
48\79 | 509.7345 | 329.2035 | 486.076 | 313.924 | 17 | 14 | 1.214 | |||
31\51 | 509.589 | 328.767 | 486.2745 | 313.7255 | 11 | 9 | 1.222 | |||
14\23 | 509.09 | 327.27 | 486.9565 | 313.0435 | 5 | 4 | 1.250 | |||
39\64 | 508.966 | 326.087 | 487.5 | 312.5 | 14 | 11 | 1.273 | |||
25\41 | 508.475 | 325.424 | 487.805 | 312.195 | 9 | 7 | 1.286 | |||
36\59 | 508.235 | 324.706 | 488.136 | 311.864 | 13 | 10 | 1.300 | |||
11\18 | 507.692 | 323.077 | 488.8 | 311.1 | 4 | 3 | 1.333 | |||
63\103 | 507.383 | 322.148 | 489.32 | 310.68 | 23 | 17 | 1.353 | |||
52\85 | 507.317 | 321.951 | 489.412 | 310.588 | 19 | 14 | 1.357 | |||
41\67 | 507.2165 | 321.6495 | 489.552 | 310.448 | 15 | 11 | 1.364 | |||
30\49 | 507.062 | 321.127 | 489.796 | 310.204 | 11 | 8 | 1.375 | |||
19\31 | 506.6 | 320 | 490.323 | 309.678 | 7 | 5 | 1.400 | |||
46\75 | 506.422 | 319.266 | 490.6 | 309.3 | 17 | 12 | 1.417 | |||
27\44 | 506.25 | 318.75 | 490.90 | 309.09 | 10 | 7 | 1.429 | |||
35\57 | 506.024 | 318.072 | 491.228 | 308.712 | 13 | 9 | 1.444 | |||
43\70 | 505.882 | 317.647 | 491.429 | 308.571 | 16 | 11 | 1.4545 | |||
51\83 | 505.785 | 317.355 | 491.566 | 308.434 | 19 | 13 | 1.4615 | |||
8\13 | 505.263 | 315.79 | 492.308 | 307.692 | 3 | 2 | 1.500 | Aeolianic-Meantone starts here | ||
45\73 | 504.673 | 314.019 | 493.151 | 306.849 | 17 | 11 | 1.5455 | |||
37\60 | 504.54 | 313.63 | 493.3 | 306.6 | 14 | 9 | 1.556 | |||
29\47 | 504.348 | 313.043 | 493.617 | 306.383 | 11 | 7 | 1.571 | |||
21\34 | 504 | 312 | 494.118 | 305.882 | 8 | 5 | 1.600 | |||
34\55 | 503.703 | 311.1 | 494.54 | 305.45 | 13 | 8 | 1.625 | |||
47\76 | 503.571 | 310.714 | 494.737 | 305.263 | 18 | 11 | 1.636 | |||
13\21 | 503.226 | 309.678 | 495.238 | 304.762 | 5 | 3 | 1.667 | |||
31\50 | 502.702 | 308.108 | 496 | 304 | 12 | 7 | 1.714 | |||
49\79 | 502.564 | 307.692 | 496.2025 | 303.7975 | 19 | 11 | 1.727 | |||
18\29 | 502.326 | 306.977 | 496.552 | 303.448 | 7 | 4 | 1.750 | |||
23\37 | 501.81 | 305.45 | 497.297 | 302.702 | 9 | 5 | 1.800 | |||
28\45 | 501.492 | 304.478 | 497.7 | 302.2 | 11 | 6 | 1.833 | |||
33\53 | 501.265 | 303.797 | 498.113 | 301.887 | 13 | 7 | 1.857 | |||
38\61 | 501.09 | 303.297 | 498.361 | 301.639 | 15 | 8 | 1.875 | |||
43\69 | 500.971 | 302.913 | 498.551 | 301.449 | 17 | 9 | 1.889 | |||
5\8 | 500 | 300 | 500 | 300 | 2 | 1 | 2.000 | Aeolianic-Meantone ends, Aeolianic-Pythagorean begins | ||
42\67 | 499.01 | 297.03 | 501.4925 | 298.5075 | 17 | 8 | 2.125 | |||
37\59 | 498.876 | 296.629 | 501.695 | 298.305 | 15 | 7 | 2.143 | |||
32\51 | 498.701 | 296.104 | 501.961 | 298.039 | 13 | 6 | 2.167 | |||
27\43 | 498.461 | 295.385 | 502.326 | 297.674 | 11 | 5 | 2.200 | |||
22\35 | 498.113 | 294.34 | 502.857 | 297.143 | 9 | 4 | 2.250 | |||
39\62 | 497.872 | 293.617 | 503.226 | 296.774 | 16 | 7 | 2.286 | |||
17\27 | 497.561 | 292.683 | 503.703 | 296.296 | 7 | 3 | 2.333 | |||
29\46 | 497.143 | 291.429 | 504.348 | 295.652 | 12 | 5 | 2.400 | |||
41\65 | 496.96 | 290.90 | 504.615 | 295.385 | 17 | 7 | 2.429 | |||
12\19 | 496.552 | 289.655 | 505.263 | 294.737 | 5 | 2 | 2.500 | |||
31\49 | 496 | 288 | 506.122 | 293.878 | 13 | 5 | 2.600 | |||
50\79 | 495.868 | 287.633 | 506.329 | 293.671 | 21 | 8 | 2.625 | |||
19\30 | 495.652 | 286.957 | 506.6 | 293.3 | 8 | 3 | 2.667 | |||
26\41 | 495.238 | 285.714 | 507.317 | 292.683 | 11 | 4 | 2.750 | |||
33\52 | 495 | 285 | 507.692 | 292.308 | 14 | 5 | 2.800 | |||
40\63 | 494.536 | 284.536 | 507.9365 | 292.0635 | 17 | 6 | 2.833 | |||
47\74 | 494.737 | 284.211 | 508.108 | 291.891 | 20 | 7 | 2.857 | |||
54\85 | 494.6565 | 283.9695 | 508.235 | 291.765 | 23 | 8 | 2.875 | |||
61\96 | 494.594 | 283.783 | 508.3 | 291.6 | 26 | 9 | 2.889 | |||
7\11 | 494.118 | 282.353 | 509.09 | 290.90 | 3 | 1 | 3.000 | Aeolianic-Pythagorean ends, Aeolianic-Superpyth begins | ||
65\102 | 493.671 | 281.013 | 509.804 | 290.196 | 28 | 9 | 3.111 | |||
58\91 | 493.617 | 280.851 | 509.89 | 290.11 | 25 | 8 | 3.125 | |||
51\80 | 493.548 | 280.645 | 510 | 290 | 22 | 7 | 3.143 | |||
44\69 | 493.458 | 280.374 | 510.145 | 289.855 | 19 | 6 | 3.167 | |||
37\58 | 493.3 | 280 | 510.345 | 289.655 | 16 | 5 | 3.200 | |||
30\47 | 493.151 | 279.452 | 510.638 | 289.362 | 13 | 4 | 3.250 | |||
23\36 | 492.857 | 278.571 | 511.1 | 288.8 | 10 | 3 | 3.333 | |||
16\25 | 492.308 | 276.923 | 512 | 288 | 7 | 2 | 3.500 | |||
25\39 | 491.803 | 275.41 | 512.8205 | 287.1795 | 11 | 3 | 3.667 | |||
34\53 | 491.566 | 274.699 | 513.2075 | 286.7925 | 15 | 4 | 3.750 | |||
43\67 | 491.429 | 274.286 | 513.433 | 286.567 | 19 | 5 | 3.800 | |||
52\81 | 491.339 | 274.016 | 513.58 | 286.42 | 23 | 6 | 3.833 | |||
61\95 | 491.275 | 273.825 | 513.684 | 286.316 | 27 | 7 | 3.857 | |||
9\14 | 490.90 | 272.72 | 514.286 | 285.714 | 4 | 1 | 4.000 | |||
47\73 | 490.435 | 271.304 | 515.0685 | 284.3315 | 21 | 5 | 4.200 | |||
38\59 | 490.323 | 270.968 | 515.254 | 284.746 | 17 | 4 | 4.250 | |||
29\45 | 490.141 | 270.422 | 515.5 | 284.4 | 13 | 3 | 4.333 | |||
20\31 | 489.795 | 269.388 | 516.129 | 283.871 | 9 | 2 | 4.500 | |||
31\48 | 489.474 | 268.421 | 516.6 | 283.3 | 14 | 3 | 4.667 | |||
42\65 | 489.32 | 267.961 | 516.923 | 283.077 | 19 | 4 | 4.750 | |||
11\17 | 488.8 | 266.6 | 517.647 | 282.353 | 5 | 1 | 5.000 | Aeolianic-Superpyth ends | ||
35\54 | 488.372 | 265.116 | 518.518 | 281.481 | 16 | 3 | 5.333 | |||
24\37 | 488.136 | 264.407 | 518.918 | 281.081 | 11 | 2 | 5.500 | |||
37\57 | 487.912 | 263.736 | 519.298 | 280.702 | 17 | 3 | 5.667 | |||
13\20 | 487.5 | 262.2 | 520 | 280 | 6 | 1 | 6.000 | |||
2\3 | 480 | 240 | 533.3 | 266.6 | 1 | 0 | → inf | Paucitonic |