Wesley family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
mNo edit summary
 
(13 intermediate revisions by 7 users not shown)
Line 1: Line 1:
This tempers out the wesley comma, 78125/73728. The wesley comma is unchanged in Wesley Woolhouse's 7/26-comma meantone--it is an eigenmonzo, in other words. More information on that can be found [http://tech.groups.yahoo.com/group/tuning-math/message/12793 here]{{dead link}}.
{{Technical data page}}
The '''wesley family''' of [[Rank-2 temperament|rank-2]] [[temperament]]s [[Tempering out|tempers out]] the [[wesley comma]], 78125/73728. The wesley comma is unchanged in [[Wesley Woolhouse]]'s 7/26-comma meantone it is an [[Eigenmonzo|eigenmonzo (i.e. unchanged-interval)]]. Here is [https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_12793.html a talk by Gene Ward Smith].  


== Wesley ==
== Wesley ==
[[Comma]]: 78125/73728
[[Subgroup]]: 2.3.5


[[Mapping]]: [{{Val|1 4 3}}, {{Val|0 -7 -2}}]
[[Comma list]]: 78125/73728


[[POTE generator]]: ~125/96 = 414.509
{{Mapping|legend=1| 1 4 3 | 0 -7 -2 }}


{{Val list|legend=1| 3, 23, 26, 29, 55c }}
: mapping generators: ~2, ~125/96
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~125/96 = 414.509
 
{{Optimal ET sequence|legend=1| 3, …, 23, 26, 29, 55c }}


[[Badness]]: 0.247718
[[Badness]]: 0.247718


=== 7-limit ===
== Septimal wesley ==
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 405/392, 875/864
[[Comma list]]: 405/392, 875/864


[[Mapping]]: [{{Val|1 4 3 8}}, {{Val|0 -7 -2 -15}}]
{{Mapping|legend=1| 1 4 3 8 | 0 -7 -2 -15 }}
 
{{Multival|legend=1|7 2 15 -13 4 29}}


[[POTE generator]]: ~9/7 = 415.519
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 415.519


{{Val list|legend=1| 3d, 23d, 26 }}
{{Optimal ET sequence|legend=1| 3d, …, 23d, 26 }}


[[Badness]]: 0.095344
[[Badness]]: 0.095344


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Comma list: 45/44, 99/98, 875/864
Comma list: 45/44, 99/98, 875/864


Mapping: [{{Val|1 4 3 8 9}}, {{Val|0 -7 -2 -15 -16}}]
Mapping: {{mapping| 1 4 3 8 9 | 0 -7 -2 -15 -16 }}


POTE generator: ~9/7 = 415.769
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 415.769


Vals: {{Val list| 3de, 23de, 26, 75bcd }}
{{Optimal ET sequence|legend=1| 3de, …, 23de, 26 }}


Badness: 0.049066
Badness: 0.049066


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Comma list: 45/44, 78/77, 99/98, 325/324
Comma list: 45/44, 78/77, 99/98, 325/324


Mapping: [{{Val|1 4 3 8 9 12}}, {{Val|0 -7 -2 -15 -16 -24}}]
Mapping: {{mapping| 1 4 3 8 9 12 | 0 -7 -2 -15 -16 -24 }}


POTE generator: ~9/7 = 415.645
Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 415.645


Vals: {{Val list| 3def, 26 }}
{{Optimal ET sequence|legend=1| 3def, 23deff, 26 }}


Badness: 0.038402
Badness: 0.038402


== Snipes ==
== Snipes ==
[[Subgroup]]: 2.3.5.7
[[Comma list]]: 225/224, 6125/5832
[[Comma list]]: 225/224, 6125/5832


[[Mapping]]: [{{Val|1 4 3 9}}, {{Val|0 -7 -2 -18}}]
{{Mapping|legend=1| 1 4 3 9 | 0 -7 -2 -18 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 413.513
 
{{Optimal ET sequence|legend=1| 3d, …, 26d, 29 }}


{{Multival|legend=1|7 2 18 -13 9 36}}
[[Badness]]: 0.117943


[[POTE generator]]: ~35/27 = 413.513
=== 11-limit ===
Subgroup: 2.3.5.7.11


{{Val list|legend=1| 29, 90cd, 119cd }}
Comma list: 55/54, 225/224, 245/242


[[Badness]]: 0.117943
Mapping: {{mapping| 1 4 3 9 10 | 0 -7 -2 -18 -19 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 413.490
 
{{Optimal ET sequence|legend=1| 3de, …, 26de, 29 }}
 
Badness: 0.054296
 
== Roman ==
{{See also| Avicennmic temperaments }}


== Crusher ==
=== 7-limit a.k.a. crusher ===
This temperament is also known as ''[[Avicennmic temperaments #Roman|roman temperament]]''.
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 525/512, 3125/3024
[[Comma list]]: 525/512, 3125/3024


[[Mapping]]: [{{Val|1 4 3 -1}}, {{Val|0 -7 -2 11}}]
{{Mapping|legend=1| 1 4 3 -1 | 0 -7 -2 11 }}


{{Multival|legend=1|7 2 -11 -13 -37 -31}}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~63/50 = 414.552


[[POTE generator]]: ~63/50 = 414.552
{{Optimal ET sequence|legend=1| 3, 23, 26, 29, 55c }}
 
{{Val list|legend=1| 3, 23, 26, 29, 55c }}


[[Badness]]: 0.113386
[[Badness]]: 0.113386


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Comma list: 100/99, 245/242, 525/512
Comma list: 100/99, 245/242, 525/512


Mapping: [{{Val|1 4 3 -1 0}}, {{Val|0 -7 -2 11 10}}]
Mapping: {{mapping| 1 4 3 -1 0 | 0 -7 -2 11 10 }}


POTE generator: ~14/11 = 414.471
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 414.471


Vals: {{Val list| 3, 23, 26, 29, 55c }}
{{Optimal ET sequence|legend=1| 3, 23, 26, 29, 55c }}


Badness: 0.052841
Badness: 0.052841


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Comma list: 65/64, 100/99, 105/104, 245/242
Comma list: 65/64, 100/99, 105/104, 245/242


Mapping: [{{Val|1 4 3 -1 0 3}}, {{Val|0 -7 -2 11 10 2}}]
Mapping: {{mapping| 1 4 3 -1 0 3 | 0 -7 -2 11 10 2 }}


POTE generator: ~14/11 = 414.472
Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 414.472


Vals: {{Val list| 3, 23, 26, 29, 55cf }}
{{Optimal ET sequence|legend=1| 3, 23, 26, 29, 55cf }}


Badness: 0.030043
Badness: 0.030043


== Dubbla ==
== Dubbla ==
[[Subgroup]]: 2.3.5.7
[[Comma list]]: 50/49, 78125/73728
[[Comma list]]: 50/49, 78125/73728


[[Mapping]]: [{{Val|2 1 4 5}}, {{Val|0 7 2 2}}]
{{Mapping|legend=1| 2 1 4 5 | 0 7 2 2 }}


{{Multival|legend=1|14 4 4 -26 -33 -2}}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~192/175 = 185.738


[[POTE generator]]: ~192/175 = 185.738
{{Optimal ET sequence|legend=1| 6, 20b, 26, 58c }}
 
{{Val list|legend=1| 6, 26, 58c, 84c }}


[[Badness]]: 0.181726
[[Badness]]: 0.181726


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Comma list: 50/49, 125/121, 1344/1331
Comma list: 50/49, 125/121, 1344/1331


Mapping: [{{Val|2 1 4 5 6}}, {{Val|0 7 2 2 3}}]
Mapping: {{mapping| 2 1 4 5 6 | 0 7 2 2 3 }}


POTE generator: ~11/10 = 185.879
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 185.879


Vals: {{Val list| 6, 26, 58c, 84c }}
{{Optimal ET sequence|legend=1| 6, 20b, 26 }}


Badness: 0.075842
Badness: 0.075842


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 105/104, 125/121, 144/143
Comma list: 50/49, 105/104, 125/121, 144/143


Mapping: [{{Val|2 1 4 5 6 4}}, {{Val|0 7 2 2 3 11}}]
Mapping: {{mapping| 2 1 4 5 6 4 | 0 7 2 2 3 11 }}


POTE generator: ~11/10 = 185.702
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 185.702


Vals: {{Val list| 26, 58c, 84c }}
{{Optimal ET sequence|legend=1| 6f, 20bff, 26 }}


Badness: 0.049603
Badness: 0.049603


[[Category:Temperament]]
[[Category:Temperament families]]
[[Category:Temperament family]]
[[Category:Pages with mostly numerical content]]
[[Category:Wesley family| ]] <!-- main article -->
[[Category:Wesley| ]] <!-- key article -->
[[Category:Rank 2]]

Latest revision as of 00:36, 24 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The wesley family of rank-2 temperaments tempers out the wesley comma, 78125/73728. The wesley comma is unchanged in Wesley Woolhouse's 7/26-comma meantone – it is an eigenmonzo (i.e. unchanged-interval). Here is a talk by Gene Ward Smith.

Wesley

Subgroup: 2.3.5

Comma list: 78125/73728

Mapping[1 4 3], 0 -7 -2]]

mapping generators: ~2, ~125/96

Optimal tuning (POTE): ~2 = 1\1, ~125/96 = 414.509

Optimal ET sequence3, …, 23, 26, 29, 55c

Badness: 0.247718

Septimal wesley

Subgroup: 2.3.5.7

Comma list: 405/392, 875/864

Mapping[1 4 3 8], 0 -7 -2 -15]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 415.519

Optimal ET sequence3d, …, 23d, 26

Badness: 0.095344

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 99/98, 875/864

Mapping: [1 4 3 8 9], 0 -7 -2 -15 -16]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 415.769

Optimal ET sequence3de, …, 23de, 26

Badness: 0.049066

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 78/77, 99/98, 325/324

Mapping: [1 4 3 8 9 12], 0 -7 -2 -15 -16 -24]]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 415.645

Optimal ET sequence3def, 23deff, 26

Badness: 0.038402

Snipes

Subgroup: 2.3.5.7

Comma list: 225/224, 6125/5832

Mapping[1 4 3 9], 0 -7 -2 -18]]

Optimal tuning (POTE): ~2 = 1\1, ~35/27 = 413.513

Optimal ET sequence3d, …, 26d, 29

Badness: 0.117943

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 225/224, 245/242

Mapping: [1 4 3 9 10], 0 -7 -2 -18 -19]]

Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 413.490

Optimal ET sequence3de, …, 26de, 29

Badness: 0.054296

Roman

7-limit a.k.a. crusher

Subgroup: 2.3.5.7

Comma list: 525/512, 3125/3024

Mapping[1 4 3 -1], 0 -7 -2 11]]

Optimal tuning (POTE): ~2 = 1\1, ~63/50 = 414.552

Optimal ET sequence3, 23, 26, 29, 55c

Badness: 0.113386

11-limit

Subgroup: 2.3.5.7.11

Comma list: 100/99, 245/242, 525/512

Mapping: [1 4 3 -1 0], 0 -7 -2 11 10]]

Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 414.471

Optimal ET sequence3, 23, 26, 29, 55c

Badness: 0.052841

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 65/64, 100/99, 105/104, 245/242

Mapping: [1 4 3 -1 0 3], 0 -7 -2 11 10 2]]

Optimal tuning (POTE): ~2 = 1\1, ~14/11 = 414.472

Optimal ET sequence3, 23, 26, 29, 55cf

Badness: 0.030043

Dubbla

Subgroup: 2.3.5.7

Comma list: 50/49, 78125/73728

Mapping[2 1 4 5], 0 7 2 2]]

Optimal tuning (POTE): ~2 = 1\1, ~192/175 = 185.738

Optimal ET sequence6, 20b, 26, 58c

Badness: 0.181726

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 125/121, 1344/1331

Mapping: [2 1 4 5 6], 0 7 2 2 3]]

Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 185.879

Optimal ET sequence6, 20b, 26

Badness: 0.075842

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 105/104, 125/121, 144/143

Mapping: [2 1 4 5 6 4], 0 7 2 2 3 11]]

Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 185.702

Optimal ET sequence6f, 20bff, 26

Badness: 0.049603