38ed7/3: Difference between revisions
m Harmonics |
|||
(11 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
While 38ed7/3 fails to accurately represent low primes, it provides great approximations of the 13th, 17th, 19th, and a multitude of higher prime harmonics, and also handles the interval of [[5/3]] well. But 38ed7/3 should, most of all, be noted for the exceptional quality of its approximation to [[11/9]], which is a mere 0.0088 cents off from just. Its natural subgroup in the [[19-limit]] is 7/3.5/3.11/9.13.17.19, but this can extend to include higher primes, especially 29, 31, and 37. | |||
38ed7/3 possesses a shimmering octave at 31 steps in, therefore making this a potential octave stretch of [[31edo]], one that sacrifices its notable accuracy in the [[7-limit]] (though a number of 7-limit intervals are still portrayed passably due to the common flat tendency of harmonics 2, 3, 5, and 7) in favor of a huge number of high primes. | |||
== Intervals == | == Intervals == | ||
{| class="wikitable" | {| class="wikitable" | ||
!Degrees | !Degrees | ||
! colspan="2" |Enneatonic | ! colspan="2" |Enneatonic | ||
! | ! colspan="2" |ed11\9~ed7/3 | ||
|- | |- | ||
| rowspan="2" |1 | | rowspan="2" |1 | ||
| colspan="2" |G^ | | colspan="2" |G^ | ||
| rowspan="2" |38.5965 | | rowspan="2" |38.5965 | ||
| rowspan="2" |38.6019 | |||
| rowspan="2" |38. | |||
|- | |- | ||
|Jbv | |Jbv | ||
Line 36: | Line 23: | ||
|Jb | |Jb | ||
|''Ab'' | |''Ab'' | ||
|77.193 | |77.193 | ||
77.2037 | |77.2037 | ||
|- | |- | ||
| rowspan="2" |3 | | rowspan="2" |3 | ||
|Jb^ | |Jb^ | ||
|''Ab^'' | |''Ab^'' | ||
| rowspan="2" |115.7895 | | rowspan="2" |115.7895 | ||
| rowspan="2" |115.8056 | |||
| rowspan="2" | | |||
|- | |- | ||
| colspan="2" |G#v | | colspan="2" |G#v | ||
Line 69: | Line 36: | ||
|4 | |4 | ||
| colspan="2" |G# | | colspan="2" |G# | ||
|154.386 | |154.386 | ||
154.4075 | |154.4075 | ||
|- | |- | ||
| rowspan="2" |5 | | rowspan="2" |5 | ||
| colspan="2" |G#^ | | colspan="2" |G#^ | ||
| rowspan="2" |192.98245 | | rowspan="2" |192.98245 | ||
| rowspan="2" |193.0093 | |||
| rowspan="2" |193. | |||
|- | |- | ||
|Jv | |Jv | ||
Line 103: | Line 50: | ||
|J | |J | ||
|''A'' | |''A'' | ||
|231.57895 | |231.57895 | ||
231.6112 | |231.6112 | ||
|- | |- | ||
|7 | |7 | ||
|J^/Av | |J^/Av | ||
|''A^/Bv'' | |''A^/Bv'' | ||
|270.1754 | |270.1754 | ||
270.2131 | |270.2131 | ||
|- | |- | ||
|8 | |8 | ||
|A | |A | ||
|''B'' | |''B'' | ||
|308.7719 | |308.7719 | ||
308.8149 | |308.8149 | ||
|- | |- | ||
|9 | |9 | ||
|A^/Bbv | |A^/Bbv | ||
|B^/Cbv | |B^/Cbv | ||
|347.3684 | |347.3684 | ||
347.4168 | |347.4168 | ||
|- | |- | ||
|10 | |10 | ||
|Bb | |Bb | ||
|''Cb'' | |''Cb'' | ||
|385.9649 | |385.9649 | ||
386.0187 | |386.0187 | ||
|- | |- | ||
|11 | |11 | ||
|Bb^/A#v | |Bb^/A#v | ||
|''Cb^/B#''v | |''Cb^/B#''v | ||
|424.5614 | |424.5614 | ||
424.6205 | |424.6205 | ||
|- | |- | ||
|12 | |12 | ||
|A# | |A# | ||
|''B#'' | |''B#'' | ||
|463.1579 | |463.1579 | ||
463.2224 | |463.2224 | ||
|- | |- | ||
|13 | |13 | ||
|A#^/Bv | |A#^/Bv | ||
|''B#^/Cv'' | |''B#^/Cv'' | ||
|501.7544 | |501.7544 | ||
|502.6667 | |||
| | |||
|- | |- | ||
|14 | |14 | ||
|B | |B | ||
|''C'' | |''C'' | ||
|540.3509 | |540.3509 | ||
540.4261 | |540.4261 | ||
|- | |- | ||
|15 | |15 | ||
|B^/Cv | |B^/Cv | ||
|''C^/Qv'' | |''C^/Qv'' | ||
|578.9474 | |578.9474 | ||
579.028 | |579.028 | ||
|- | |- | ||
|16 | |16 | ||
|C | |C | ||
|''Q'' | |''Q'' | ||
|617.5439 | |617.5439 | ||
617.6299 | |617.6299 | ||
|- | |- | ||
|17 | |17 | ||
|C^/Qbv | |C^/Qbv | ||
|''Q^/Dbv'' | |''Q^/Dbv'' | ||
|656.14035 | |656.14035 | ||
656.2317 | |656.2317 | ||
|- | |- | ||
|18 | |18 | ||
|Qb | |Qb | ||
|''Db'' | |''Db'' | ||
|694.7368 | |694.7368 | ||
694.8336 | |694.8336 | ||
|- | |- | ||
|19 | |19 | ||
|Qb^/C#v | |Qb^/C#v | ||
|''Db^/Q#v'' | |''Db^/Q#v'' | ||
| | |733.{{Overline|3}} | ||
|733.43545 | |||
| | |||
| | |||
733.43545 | |||
|- | |- | ||
|20 | |20 | ||
|C# | |C# | ||
|''Q#'' | |''Q#'' | ||
|771.9298 | |771.9298 | ||
772.0373 | |772.0373 | ||
|- | |- | ||
|21 | |21 | ||
|C#^/Qv | |C#^/Qv | ||
|''Q#/Dv'' | |''Q#/Dv'' | ||
|810.5263 | |810.5263 | ||
810.6392 | |810.6392 | ||
|- | |- | ||
|22 | |22 | ||
|Q | |Q | ||
|''D'' | |''D'' | ||
|849.1228 | |849.1228 | ||
849.24105 | |849.24105 | ||
|- | |- | ||
|23 | |23 | ||
|Q^/Dv | |Q^/Dv | ||
|''D^/Sv'' | |''D^/Sv'' | ||
|887.7193 | |887.7193 | ||
887.8429 | |887.8429 | ||
|- | |- | ||
|24 | |24 | ||
|D | |D | ||
|''S'' | |''S'' | ||
|926.3158 | |926.3158 | ||
926.4448 | |926.4448 | ||
|- | |- | ||
| rowspan="2" |25 | | rowspan="2" |25 | ||
|D^ | |D^ | ||
|''S^'' | |''S^'' | ||
| rowspan="2" |964.9123 | | rowspan="2" |964.9123 | ||
| rowspan="2" |965.04665 | |||
| rowspan="2" | | |||
|- | |- | ||
| colspan="2" |Ebv | | colspan="2" |Ebv | ||
Line 424: | Line 171: | ||
|26 | |26 | ||
| colspan="2" |Eb | | colspan="2" |Eb | ||
|1003.5088 | |1003.5088 | ||
1003.6485 | |1003.6485 | ||
|- | |- | ||
| rowspan="2" |27 | | rowspan="2" |27 | ||
| colspan="2" |Eb^ | | colspan="2" |Eb^ | ||
| rowspan="2" |1042.1053 | | rowspan="2" |1042.1053 | ||
| rowspan="2" |1042.2504 | |||
| rowspan="2" | | |||
|- | |- | ||
|D#v | |D#v | ||
Line 458: | Line 185: | ||
|D# | |D# | ||
|''S#'' | |''S#'' | ||
|1080.70175 | |1080.70175 | ||
1080.85225 | |1080.85225 | ||
|- | |- | ||
| rowspan="2" |29 | | rowspan="2" |29 | ||
|D#^ | |D#^ | ||
|''S#^'' | |''S#^'' | ||
| rowspan="2" |1119.29825 | | rowspan="2" |1119.29825 | ||
| rowspan="2" |1119.4541 | |||
| rowspan="2" | | |||
|- | |- | ||
| colspan="2" |Ev | | colspan="2" |Ev | ||
Line 491: | Line 198: | ||
|30 | |30 | ||
| colspan="2" |E | | colspan="2" |E | ||
|1157.8947 | |1157.8947 | ||
1158.0559 | |1158.0559 | ||
|- | |- | ||
|31 | |31 | ||
| colspan="2" |E^/Fbv | | colspan="2" |E^/Fbv | ||
|1196.4912 | |1196.4912 | ||
1196.6578 | |1196.6578 | ||
|- | |- | ||
|32 | |32 | ||
| colspan="2" |Fb | | colspan="2" |Fb | ||
|1235.0877 | |1235.0877 | ||
1235.2567 | |1235.2567 | ||
|- | |- | ||
|33 | |33 | ||
| colspan="2" |Fb^/E#v | | colspan="2" |Fb^/E#v | ||
|1273.68425 | |1273.68425 | ||
1273.8616 | |1273.8616 | ||
|- | |- | ||
|34 | |34 | ||
| colspan="2" |E# | | colspan="2" |E# | ||
|1312.2807 | |1312.2807 | ||
1312.4634 | |1312.4634 | ||
|- | |- | ||
|35 | |35 | ||
| colspan="2" |E#^/Fv | | colspan="2" |E#^/Fv | ||
| | |1350.8772 | ||
|1351.0654 | |||
| | |||
|- | |- | ||
|36 | |36 | ||
| colspan="2" |F | | colspan="2" |F | ||
|1389.4737 | |1389.4737 | ||
1389.6672 | |1389.6672 | ||
|- | |- | ||
|37 | |37 | ||
| colspan="2" |F^/Gv | | colspan="2" |F^/Gv | ||
|1428.0702 | |1428.0702 | ||
1428.269 | |1428.269 | ||
|- | |- | ||
|38 | |38 | ||
| colspan="2" |G | | colspan="2" |G | ||
| | |1466.{{Overline|6}} | ||
|1466.8709 | |||
| | |||
| | |||
1466.8709 | |||
|} | |} | ||
== Harmonics == | |||
{{Harmonics in equal | |||
| steps = 38 | |||
| num = 7 | |||
| denom = 3 | |||
| intervals = prime | |||
}} | |||
{{Harmonics in equal | |||
| steps = 38 | |||
| num = 7 | |||
| denom = 3 | |||
| start = 12 | |||
| collapsed = 1 | |||
| intervals = prime | |||
}} |
Latest revision as of 07:54, 5 October 2024
← 37ed7/3 | 38ed7/3 | 39ed7/3 → |
(semiconvergent)
38 equal divisions of 7/3 (abbreviated 38ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 38 equal parts of about 38.6 ¢ each. Each step represents a frequency ratio of (7/3)1/38, or the 38th root of 7/3.
While 38ed7/3 fails to accurately represent low primes, it provides great approximations of the 13th, 17th, 19th, and a multitude of higher prime harmonics, and also handles the interval of 5/3 well. But 38ed7/3 should, most of all, be noted for the exceptional quality of its approximation to 11/9, which is a mere 0.0088 cents off from just. Its natural subgroup in the 19-limit is 7/3.5/3.11/9.13.17.19, but this can extend to include higher primes, especially 29, 31, and 37.
38ed7/3 possesses a shimmering octave at 31 steps in, therefore making this a potential octave stretch of 31edo, one that sacrifices its notable accuracy in the 7-limit (though a number of 7-limit intervals are still portrayed passably due to the common flat tendency of harmonics 2, 3, 5, and 7) in favor of a huge number of high primes.
Intervals
Degrees | Enneatonic | ed11\9~ed7/3 | ||
---|---|---|---|---|
1 | G^ | 38.5965 | 38.6019 | |
Jbv | Abv | |||
2 | Jb | Ab | 77.193 | 77.2037 |
3 | Jb^ | Ab^ | 115.7895 | 115.8056 |
G#v | ||||
4 | G# | 154.386 | 154.4075 | |
5 | G#^ | 192.98245 | 193.0093 | |
Jv | Av | |||
6 | J | A | 231.57895 | 231.6112 |
7 | J^/Av | A^/Bv | 270.1754 | 270.2131 |
8 | A | B | 308.7719 | 308.8149 |
9 | A^/Bbv | B^/Cbv | 347.3684 | 347.4168 |
10 | Bb | Cb | 385.9649 | 386.0187 |
11 | Bb^/A#v | Cb^/B#v | 424.5614 | 424.6205 |
12 | A# | B# | 463.1579 | 463.2224 |
13 | A#^/Bv | B#^/Cv | 501.7544 | 502.6667 |
14 | B | C | 540.3509 | 540.4261 |
15 | B^/Cv | C^/Qv | 578.9474 | 579.028 |
16 | C | Q | 617.5439 | 617.6299 |
17 | C^/Qbv | Q^/Dbv | 656.14035 | 656.2317 |
18 | Qb | Db | 694.7368 | 694.8336 |
19 | Qb^/C#v | Db^/Q#v | 733.3 | 733.43545 |
20 | C# | Q# | 771.9298 | 772.0373 |
21 | C#^/Qv | Q#/Dv | 810.5263 | 810.6392 |
22 | Q | D | 849.1228 | 849.24105 |
23 | Q^/Dv | D^/Sv | 887.7193 | 887.8429 |
24 | D | S | 926.3158 | 926.4448 |
25 | D^ | S^ | 964.9123 | 965.04665 |
Ebv | ||||
26 | Eb | 1003.5088 | 1003.6485 | |
27 | Eb^ | 1042.1053 | 1042.2504 | |
D#v | S#v | |||
28 | D# | S# | 1080.70175 | 1080.85225 |
29 | D#^ | S#^ | 1119.29825 | 1119.4541 |
Ev | ||||
30 | E | 1157.8947 | 1158.0559 | |
31 | E^/Fbv | 1196.4912 | 1196.6578 | |
32 | Fb | 1235.0877 | 1235.2567 | |
33 | Fb^/E#v | 1273.68425 | 1273.8616 | |
34 | E# | 1312.2807 | 1312.4634 | |
35 | E#^/Fv | 1350.8772 | 1351.0654 | |
36 | F | 1389.4737 | 1389.6672 | |
37 | F^/Gv | 1428.0702 | 1428.269 | |
38 | G | 1466.6 | 1466.8709 |
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.3 | -10.5 | -7.0 | -10.5 | +17.7 | -1.3 | -2.5 | -2.1 | +14.6 | -0.7 | -0.3 |
Relative (%) | -8.7 | -27.1 | -18.1 | -27.1 | +45.8 | -3.4 | -6.5 | -5.4 | +37.8 | -1.8 | -0.9 | |
Steps (reduced) |
31 (31) |
49 (11) |
72 (34) |
87 (11) |
108 (32) |
115 (1) |
127 (13) |
132 (18) |
141 (27) |
151 (37) |
154 (2) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.2 | +17.4 | +12.2 | +12.6 | -2.4 | +5.0 | -14.1 | +16.4 | -6.7 | -16.2 | +1.4 |
Relative (%) | +5.6 | +45.2 | +31.6 | +32.7 | -6.1 | +12.9 | -36.6 | +42.6 | -17.5 | -42.0 | +3.7 | |
Steps (reduced) |
162 (10) |
167 (15) |
169 (17) |
173 (21) |
178 (26) |
183 (31) |
184 (32) |
189 (37) |
191 (1) |
192 (2) |
196 (6) |