10edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>xenwolf
**Imported revision 519523810 - Original comment: **
Fredg999 category edits (talk | contribs)
m Removing from Category:Edt using Cat-a-lot
 
(13 intermediate revisions by 7 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{ED intro}}
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2014-08-25 04:13:45 UTC</tt>.<br>
: The original revision id was <tt>519523810</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">
&lt;span style="font-size: 18px; line-height: 27px;"&gt;**10 Equal Divisions of the Tritave**&lt;/span&gt;


|| Degrees || Cents || Approximate Ratios ||
== Theory ==
|| 0 || 0 || &lt;span style="color: #660000;"&gt;[[1_1|1/1]]&lt;/span&gt; ||
10edt has very accurate 5-limit harmony for such a small number of steps per tritave, most notably the [[5/4]] inherited from 5edt. 10edt introduces some new harmonic properties though — such as the 571 cent tritone, which can function as [[7/5]]. We can use this to readily construct chords such as 4:5:7:12, although the [[7/4]], being 18 cents flat, does considerable damage to the consonance of this chord.  
|| 1 || 190.196 || [[10_9|10/9]], [[28_25|28/25]] ||
|| 2 || 380.391 || &lt;span style="color: #660000;"&gt;[[5_4|5/4]]&lt;/span&gt; ||
|| 3 || 570.587 || [[7_5|7/5]] ||
|| 4 || 760.782 || &lt;span style="color: #660000;"&gt;[[14_9|14/9]]&lt;/span&gt; ||
|| 5 || 950.978 || [[19_11|19/11]]? ||
|| 6 || 1141.173 || &lt;span style="color: #660000;"&gt;[[27_14|27/14]]&lt;/span&gt; ||
|| 7 || 1331.369 || [[15_7|15/7]] ([[15_14|15/14]] plus an octave) ||
|| 8 || 1521.564 || [[12_5|5/5]] (&lt;span style="color: #660000;"&gt;[[6_5|6/5]]&lt;/span&gt; plus an octave) ||
|| 9 || 1711.760 || [[27_10|27/10]] ||
|| 10 || 1901.955 || [[3_1|3/1]] ||


10edt also splits the major third in half, categorizing this tuning as a fringe variety of "meantone" temperament.
One step of 10edt can serve as the generator for [[pocus]] temperament, a [[Temperament merging|merge]] of [[sensamagic]] and 2.3.5.7.13 [[catakleismic]], which tempers out [[169/168]], [[225/224]], and [[245/243]] in the 2.3.5.7.13 subgroup.


10edt, like [[5edt]], has very accurate 5-limit harmony for such a small number of steps per tritave. 10edt introduces some new harmonic properties though; notably the 571 cent tritone which can function as 7/5. It also splits the major third in half, categorizing this tuning as a fringe variety of "meantone" temperament.</pre></div>
=== Harmonics ===
<h4>Original HTML content:</h4>
{{Harmonics in equal|10|3|1}}
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;10edt&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;br /&gt;
{{Harmonics in equal|10|3|1|intervals=prime}}
&lt;span style="font-size: 18px; line-height: 27px;"&gt;&lt;strong&gt;10 Equal Divisions of the Tritave&lt;/strong&gt;&lt;/span&gt;&lt;br /&gt;
&lt;br /&gt;


=== Interval table ===
{| class="wikitable"
|-
! Degrees
! [[Cent]]s
! [[Hekt]]s
! Approximate Ratios
|-
| colspan="3" | 0
| <span style="color: #660000;">[[1/1]]</span>
|-
| 1
| 190.196
| 130
| [[10/9]], [[28/25]]
|-
| 2
| 380.391
| 260
| <span style="color: #660000;">[[5/4]]</span>
|-
| 3
| 570.587
| 390
| [[7/5]]
|-
| 4
| 760.782
| 520
| <span style="color: #660000;">[[14/9]]</span>
|-
| 5
| 950.978
| 650
| 45/26, [[26/15]]
|-
| 6
| 1141.173
| 780
| <span style="color: #660000;">[[27/14]]</span>
|-
| 7
| 1331.369
| 910
| [[15/7]] ([[15/14]] plus an octave)
|-
| 8
| 1521.564
| 1040
| [[12/5]] (<span style="color: #660000;">[[6/5]]</span> plus an octave)
|-
| 9
| 1711.760
| 1170
| [[27/20|27/10]]
|-
| 10
| 1901.955
| 1300
| [[3/1]]
|}


&lt;table class="wiki_table"&gt;
[[Category:Macrotonal]]
    &lt;tr&gt;
        &lt;td&gt;Degrees&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Cents&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Approximate Ratios&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="color: #660000;"&gt;&lt;a class="wiki_link" href="/1_1"&gt;1/1&lt;/a&gt;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;190.196&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/10_9"&gt;10/9&lt;/a&gt;, &lt;a class="wiki_link" href="/28_25"&gt;28/25&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;380.391&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="color: #660000;"&gt;&lt;a class="wiki_link" href="/5_4"&gt;5/4&lt;/a&gt;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;570.587&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/7_5"&gt;7/5&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;760.782&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="color: #660000;"&gt;&lt;a class="wiki_link" href="/14_9"&gt;14/9&lt;/a&gt;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;950.978&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/19_11"&gt;19/11&lt;/a&gt;?&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1141.173&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="color: #660000;"&gt;&lt;a class="wiki_link" href="/27_14"&gt;27/14&lt;/a&gt;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1331.369&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/15_7"&gt;15/7&lt;/a&gt; (&lt;a class="wiki_link" href="/15_14"&gt;15/14&lt;/a&gt; plus an octave)&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1521.564&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/12_5"&gt;5/5&lt;/a&gt; (&lt;span style="color: #660000;"&gt;&lt;a class="wiki_link" href="/6_5"&gt;6/5&lt;/a&gt;&lt;/span&gt; plus an octave)&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1711.760&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/27_10"&gt;27/10&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1901.955&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/3_1"&gt;3/1&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;br /&gt;
10edt, like &lt;a class="wiki_link" href="/5edt"&gt;5edt&lt;/a&gt;, has very accurate 5-limit harmony for such a small number of steps per tritave. 10edt introduces some new harmonic properties though; notably the 571 cent tritone which can function as 7/5. It also splits the major third in half, categorizing this tuning as a fringe variety of &amp;quot;meantone&amp;quot; temperament.&lt;/body&gt;&lt;/html&gt;</pre></div>

Latest revision as of 15:31, 31 July 2025

← 9edt 10edt 11edt →
Prime factorization 2 × 5
Step size 190.196 ¢ 
Octave 6\10edt (1141.17 ¢) (→ 3\5edt)
Consistency limit 3
Distinct consistency limit 3

10 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 10edt or 10ed3), is a nonoctave tuning system that divides the interval of 3/1 into 10 equal parts of about 190 ¢ each. Each step represents a frequency ratio of 31/10, or the 10th root of 3.

Theory

10edt has very accurate 5-limit harmony for such a small number of steps per tritave, most notably the 5/4 inherited from 5edt. 10edt introduces some new harmonic properties though — such as the 571 cent tritone, which can function as 7/5. We can use this to readily construct chords such as 4:5:7:12, although the 7/4, being 18 cents flat, does considerable damage to the consonance of this chord.

10edt also splits the major third in half, categorizing this tuning as a fringe variety of "meantone" temperament.

One step of 10edt can serve as the generator for pocus temperament, a merge of sensamagic and 2.3.5.7.13 catakleismic, which tempers out 169/168, 225/224, and 245/243 in the 2.3.5.7.13 subgroup.

Harmonics

Approximation of harmonics in 10edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -58.8 +0.0 +72.5 +66.6 -58.8 +54.7 +13.7 +0.0 +7.8 +33.0 +72.5
Relative (%) -30.9 +0.0 +38.1 +35.0 -30.9 +28.8 +7.2 +0.0 +4.1 +17.3 +38.1
Steps
(reduced)
6
(6)
10
(0)
13
(3)
15
(5)
16
(6)
18
(8)
19
(9)
20
(0)
21
(1)
22
(2)
23
(3)
Approximation of prime harmonics in 10edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -58.8 +0.0 +66.6 +54.7 +33.0 -66.0 +40.1 +37.8 +87.4 +66.5 -49.0
Relative (%) -30.9 +0.0 +35.0 +28.8 +17.3 -34.7 +21.1 +19.9 +46.0 +35.0 -25.7
Steps
(reduced)
6
(6)
10
(0)
15
(5)
18
(8)
22
(2)
23
(3)
26
(6)
27
(7)
29
(9)
31
(1)
31
(1)

Interval table

Degrees Cents Hekts Approximate Ratios
0 1/1
1 190.196 130 10/9, 28/25
2 380.391 260 5/4
3 570.587 390 7/5
4 760.782 520 14/9
5 950.978 650 45/26, 26/15
6 1141.173 780 27/14
7 1331.369 910 15/7 (15/14 plus an octave)
8 1521.564 1040 12/5 (6/5 plus an octave)
9 1711.760 1170 27/10
10 1901.955 1300 3/1