3643edo: Difference between revisions
Jump to navigation
Jump to search
Created page with "{{Infobox ET}} {{EDO intro|3643}} == Theory == 3643edo is consistent to the 15-odd-limit, tempering out 123201/123200, 6656/6655, 1016064/1015625, 655473/..." |
→Music: +link |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
Line 13: | Line 13: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" |[[Subgroup]] | |- | ||
! rowspan="2" |[[Comma list | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" |[[Mapping]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" |Optimal<br>8ve | ! rowspan="2" | [[Mapping]] | ||
! colspan="2" |Tuning | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
|- | ! colspan="2" | Tuning error | ||
![[TE error|Absolute]] (¢) | |- | ||
![[TE simple badness|Relative]] (%) | ! [[TE error|Absolute]] (¢) | ||
! [[TE simple badness|Relative]] (%) | |||
|- | |- | ||
| 2.3 | | 2.3 | ||
Line 32: | Line 33: | ||
| {{monzo|22 33 -32}}, {{monzo|199 -86 -27}} | | {{monzo|22 33 -32}}, {{monzo|199 -86 -27}} | ||
| {{mapping|3643 5774 8459}} | | {{mapping|3643 5774 8459}} | ||
| | | −0.0089 | ||
| 0.0154 | | 0.0154 | ||
| 4.68 | | 4.68 | ||
Line 39: | Line 40: | ||
| {{monzo|-9 5 -8 7}}, {{monzo|3 -24 3 10}}, {{monzo|43 -1 -13 -4}} | | {{monzo|-9 5 -8 7}}, {{monzo|3 -24 3 10}}, {{monzo|43 -1 -13 -4}} | ||
| {{mapping|3643 5774 8459 10227}} | | {{mapping|3643 5774 8459 10227}} | ||
| | | −0.0010 | ||
| 0.0192 | | 0.0192 | ||
| 5.83 | | 5.83 | ||
Line 46: | Line 47: | ||
| 117649/117612, 50014503/50000000, 520224768/519921875, 234365481/234256000 | | 117649/117612, 50014503/50000000, 520224768/519921875, 234365481/234256000 | ||
| {{mapping|3643 5774 8459 10227 12603}} | | {{mapping|3643 5774 8459 10227 12603}} | ||
| | | −0.0063 | ||
| 0.0202 | | 0.0202 | ||
| 6.13 | | 6.13 | ||
Line 53: | Line 54: | ||
| 123201/123200, 6656/6655, 1016064/1015625, 655473/655360, 2250423/2249728 | | 123201/123200, 6656/6655, 1016064/1015625, 655473/655360, 2250423/2249728 | ||
| {{mapping|3643 5774 8459 10227 12603 13481}} | | {{mapping|3643 5774 8459 10227 12603 13481}} | ||
| | | −0.0097 | ||
| 0.0199 | | 0.0199 | ||
| 6.04 | | 6.04 | ||
Line 60: | Line 61: | ||
| 12376/12375, 14400/14399, 123201/123200, 1796256/1795625, 637637/637500, 2100875/2100384 | | 12376/12375, 14400/14399, 123201/123200, 1796256/1795625, 637637/637500, 2100875/2100384 | ||
| {{mapping|3643 5774 8459 10227 12603 13481 14891}} | | {{mapping|3643 5774 8459 10227 12603 13481 14891}} | ||
| | | −0.0126 | ||
| 0.0197 | | 0.0197 | ||
| 5.98 | | 5.98 | ||
|} | |} | ||
== Music == | |||
; [[Francium]] | |||
* "Don't Make a Difference" from ''Don't'' (2025) – [https://open.spotify.com/track/1sRKpCbUmknJfUsYlpqvbW Spotify] | [https://francium223.bandcamp.com/track/dont-make-a-difference Bandcamp] | [https://www.youtube.com/watch?v=6C515dSWG3E YouTube] |
Latest revision as of 11:57, 3 July 2025
← 3642edo | 3643edo | 3644edo → |
3643 equal divisions of the octave (abbreviated 3643edo or 3643ed2), also called 3643-tone equal temperament (3643tet) or 3643 equal temperament (3643et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 3643 equal parts of about 0.329 ¢ each. Each step represents a frequency ratio of 21/3643, or the 3643rd root of 2.
Theory
3643edo is consistent to the 15-odd-limit, tempering out 123201/123200, 6656/6655, 1016064/1015625, 655473/655360 and 2250423/2249728 in the 13-limit. It supports 9177/9176 in the 2.3.7.19.23.31.37 subgroup.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | -0.006 | +0.071 | -0.064 | +0.096 | +0.098 | +0.123 | -0.066 | -0.111 | +0.124 | -0.045 |
Relative (%) | +0.0 | -1.8 | +21.6 | -19.4 | +29.1 | +29.8 | +37.3 | -20.0 | -33.6 | +37.5 | -13.7 | |
Steps (reduced) |
3643 (0) |
5774 (2131) |
8459 (1173) |
10227 (2941) |
12603 (1674) |
13481 (2552) |
14891 (319) |
15475 (903) |
16479 (1907) |
17698 (3126) |
18048 (3476) |
Subsets and supersets
3643edo is the 510th prime edo.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-5774 3643⟩ | [⟨3643 5774]] | +0.0019 | 0.0019 | 0.58 |
2.3.5 | [22 33 -32⟩, [199 -86 -27⟩ | [⟨3643 5774 8459]] | −0.0089 | 0.0154 | 4.68 |
2.3.5.7 | [-9 5 -8 7⟩, [3 -24 3 10⟩, [43 -1 -13 -4⟩ | [⟨3643 5774 8459 10227]] | −0.0010 | 0.0192 | 5.83 |
2.3.5.7.11 | 117649/117612, 50014503/50000000, 520224768/519921875, 234365481/234256000 | [⟨3643 5774 8459 10227 12603]] | −0.0063 | 0.0202 | 6.13 |
2.3.5.7.11.13 | 123201/123200, 6656/6655, 1016064/1015625, 655473/655360, 2250423/2249728 | [⟨3643 5774 8459 10227 12603 13481]] | −0.0097 | 0.0199 | 6.04 |
2.3.5.7.11.13.17 | 12376/12375, 14400/14399, 123201/123200, 1796256/1795625, 637637/637500, 2100875/2100384 | [⟨3643 5774 8459 10227 12603 13481 14891]] | −0.0126 | 0.0197 | 5.98 |