User:Xenllium/Xenllium's circulating scales: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
fixed typo (cube-root rather than square-root in ratio)
Xenllium (talk | contribs)
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 2: Line 2:


== Xentwelve ==
== Xentwelve ==
'''Xentwelve''' is a 12-tone circulating scale based on [[12edo|12 equal temperament]]. In summary, it is close to [[1/3-comma meantone]] in the natural keys and [[Pythagorean tuning]] in the remote keys. The generator is a perfect fifth, which comes in three sizes, with eight pure fifths (at C–G, C♯–G♯, E♭–B♭, E–B, F–C, F♯–C♯, B♭–F and B–F♯, frequency ratio [[3/2]]), three 1/3-comma meantone fifths (at D–A, G–D and A–E, frequency ratio (10/3)^(1/3)), and one narrow schismic fifth (at G♯–D♯ (A♭–E♭), frequency ratio [[16384/10935]]). It derives two major thirds exact [[5/4]] (at C–E and G–B) and one minor third exact [[6/5]] (at E–G).
'''Xentwelve''' is a 12-tone circulating scale based on [[12edo|12 equal temperament]]. In summary, it is close to [[1/3-comma meantone]] in the natural keys and [[Pythagorean tuning]] in the remote keys. The generator is a perfect fifth, which comes in three sizes, with eight pure fifths (at C–G, C♯–G♯, E♭–B♭, E–B, F–C, F♯–C♯, B♭–F and B–F♯, frequency ratio [[3/2]]), three 1/3-comma meantone fifths (at D–A, G–D and A–E), and one schisma-compressed fifth (at G♯–D♯ (A♭–E♭), frequency ratio [[16384/10935]]). It derives two major thirds exact [[5/4]] (at C–E and G–B) and one minor third exact [[6/5]] (at E–G), with a pure major triad (at C–E–G) and a pure minor triad (at E–G–B).


<pre>
<pre>
Line 8: Line 8:
!
!
Xentwelve, Xenllium's 12-tone circulating scale, Central A
Xentwelve, Xenllium's 12-tone circulating scale, Central A
12
12
!
!
104.56252207087
104.56252207087
196.74123853187
196.74123853187
308.47252380165
308.47252380165
400.65124026264
400.65124026264
505.21376233352
505.21376233352
602.60752120549
602.60752120549
694.78623766648
694.78623766648
806.51752293626
806.51752293626
898.69623939726
898.69623939726
1010.42752466704
1010.42752466704
1102.60624112803
1102.60624112803
1200.00000000000
1200.00000000000
</pre>
</pre>


=== Intervals ===
By the definition, there are no fifths larger than pure 3/2, no major thirds larger than Pythagorean 81/64, no minor thirds smaller than Pythagorean 32/27, and no whole tones larger than Pythagorean 9/8. Major thirds and minor thirds come in five sizes, whole tones and semitones come in four sizes respectively.
<div class="toccolours mw-collapsible mw-collapsed" style="width:500px; overflow:auto;">
<div style="line-height:1.6;">'''Sizes and occurrences of fifth and fourth'''</div>
<div class="mw-collapsible-content">
{| class="wikitable center-all"
{| class="wikitable center-all"
|+ Sizes and occurrences of fifth and fourth
! colspan="4" | Fifth (7-step)
! colspan="4" | Fifth (7-step)
! colspan="4" | Fourth (5-step)
! colspan="4" | Fourth (5-step)
Line 65: Line 70:
| +0.00000
| +0.00000
|}
|}
</div></div>


<div class="toccolours mw-collapsible mw-collapsed" style="width:500px; overflow:auto;">
<div style="line-height:1.6;">'''Sizes and occurrences of major third and minor third'''</div>
<div class="mw-collapsible-content">
{| class="wikitable center-all left-4 left-8"
{| class="wikitable center-all left-4 left-8"
|+ Sizes and occurrences of major third and minor third
! colspan="4" | Major third (4-step)
! colspan="4" | Major third (4-step)
! colspan="4" | Minor third (3-step)
! colspan="4" | Minor third (3-step)
Line 128: Line 136:
| +0.00000
| +0.00000
|}
|}
</div></div>
<div class="toccolours mw-collapsible mw-collapsed" style="width:500px; overflow:auto;">
<div style="line-height:1.6;">'''Sizes and occurrences of whole tone and semitone'''</div>
<div class="mw-collapsible-content">
{| class="wikitable center-all left-3 left-6"
! colspan="3" | Whole tone
! colspan="3" | Semitone
|-
! Occurrences
! Ratio
! Cents
! Occurrences
! Ratio
! Cents
|-
| D–E <br> G–A
| <math>\sqrt[3]{25/18}</math>
| 189.57248
| rowspan="3" | C–D♭ <br> D♯–E <br> F–G♭ <br> G–A♭ <br> A♯–B
| rowspan="3" | <math>135/128</math>
| rowspan="3" | 92.17872
|-
| C–D <br> A–B
| <math>\sqrt[3]{45/32}</math>
| 196.74124
|-
| rowspan="2" | D♭–E♭ <br> A♭–B♭
| rowspan="2" | <math>4096/3645</math>
| rowspan="2" | 201.95628
|-
| rowspan="2" | D–E♭<br>G♯–A
| rowspan="2" | <math>\sqrt[3]{1048576/885735}</math>
| rowspan="2" | 97.39376
|-
| rowspan="3" | E♭–F <br> E–F♯ <br> F–G <br> F♯–G♯ <br> B♭–C <br>B–C♯
| rowspan="3" | <math>9/8</math>
| rowspan="3" | 203.91000
|-
| C♯–D <br> A–B♭
| <math>\sqrt[3]{65536/54675}</math>
| 104.56252
|-
| E–F <br> F♯–G <br> B–C
| <math>16/15</math>
| 111.73129
|}
</div></div>
=== Music ===
* ''[https://youtube.com/watch?v=QOFBKfCYThI Xentwelve tuning]'' – demonstration of Xentwelve tuning
* [https://youtube.com/watch?v=bbJ0HjPAuaA <span lang="ja" style="font-family:Yu Gothic UI, Yu Gothic, Meiryo, MS PGothic, sans-serif">【オリジナル曲】かなしいこと</span> / The sadness]
== 31-tone circulating scales ==
'''Xenthirtyone''' is a 31-tone circulating scale based on [[31edo|31 equal temperament]]. There are two circulating scales, named ''Xenthirtyone I'' and ''Xenthirtyone II'', generated by a major third, which comes in three sizes, with twenty-two pure major thirds, eight 1/4-Würschmidt-comma-stretched major thirds, and one luna-comma-stretched major third.
=== Xenthirtyone I ===
<pre>
! xenthirtyone1.scl
!
Xenthirtyone I, Xenllium's 31-tone circulating scale
31
!
128/125
73.53374935096
16/15
2048/1875
262144/234375
9375/8192
75/64
6/5
348.11617794602
5/4
32/25
462.70878570247
4/3
512/375
65536/46875
46875/32768
375/256
3/2
737.29121429753
25/16
8/5
851.88382205398
5/3
128/75
16384/9375
234375/131072
1875/1024
15/8
1126.46625064904
125/64
2/1
</pre>
=== Xenthirtyone II ===
<pre>
! xenthirtyone2.scl
!
Xenthirtyone II, Xenllium's 31-tone circulating scale
31
!
128/125
79.25639432431
117.45393024313
155.65146616195
262144/234375
9375/8192
271.72110610838
309.91864202720
348.11617794602
5/4
32/25
465.57010818915
503.76764410797
541.96518002679
65536/46875
46875/32768
658.03481997321
696.23235589203
734.42989181085
25/16
8/5
851.88382205398
890.08135797280
928.27889389162
16384/9375
234375/131072
1044.34853383805
1082.54606975687
1120.74360567569
125/64
2/1
</pre>


[[Category:Pages with Scala files]]
[[Category:12-tone scales]]
[[Category:12-tone scales]]
[[Category:31-tone scales]]
[[Category:Tempered scales]]
[[Category:Tempered scales]]

Latest revision as of 14:02, 22 September 2024

Below are listed circulating scales introduced by Xenllium.

Xentwelve

Xentwelve is a 12-tone circulating scale based on 12 equal temperament. In summary, it is close to 1/3-comma meantone in the natural keys and Pythagorean tuning in the remote keys. The generator is a perfect fifth, which comes in three sizes, with eight pure fifths (at C–G, C♯–G♯, E♭–B♭, E–B, F–C, F♯–C♯, B♭–F and B–F♯, frequency ratio 3/2), three 1/3-comma meantone fifths (at D–A, G–D and A–E), and one schisma-compressed fifth (at G♯–D♯ (A♭–E♭), frequency ratio 16384/10935). It derives two major thirds exact 5/4 (at C–E and G–B) and one minor third exact 6/5 (at E–G), with a pure major triad (at C–E–G) and a pure minor triad (at E–G–B).

! xentwelve_a.scl
!
Xentwelve, Xenllium's 12-tone circulating scale, Central A
12
!
104.56252207087
196.74123853187
308.47252380165
400.65124026264
505.21376233352
602.60752120549
694.78623766648
806.51752293626
898.69623939726
1010.42752466704
1102.60624112803
1200.00000000000

Intervals

By the definition, there are no fifths larger than pure 3/2, no major thirds larger than Pythagorean 81/64, no minor thirds smaller than Pythagorean 32/27, and no whole tones larger than Pythagorean 9/8. Major thirds and minor thirds come in five sizes, whole tones and semitones come in four sizes respectively.

Sizes and occurrences of fifth and fourth
Fifth (7-step) Fourth (5-step)
Occurrences Ratio Cents Error
from 3/2
Occurrences Ratio Cents Error
from 4/3
D–A
G–D
A–E
[math]\displaystyle{ \sqrt[3]{10/3} }[/math] 694.78624 −7.16876 D–G
E–A
A–D
[math]\displaystyle{ \sqrt[3]{12/5} }[/math] 505.21376 +7.16876
G♯–D♯
(A♭–E♭)
[math]\displaystyle{ 16384/10935 }[/math] 700.00128 −1.95372 D♯–G♯
(E♭–A♭)
[math]\displaystyle{ 10935/8192 }[/math] 499.99872 +1.95372
C–G
C♯–G♯
E♭–B♭
E–B
F–C
F♯–C♯
B♭–F
B–F♯
[math]\displaystyle{ 3/2 }[/math] 701.95500 +0.00000 C–F
C♯–F♯
F–B♭
F♯–B
G–C
G♯–C♯
B♭–E♭
B–E
[math]\displaystyle{ 4/3 }[/math] 498.04500 +0.00000
Sizes and occurrences of major third and minor third
Major third (4-step) Minor third (3-step)
Occurrences Ratio Cents Error
from 5/4
Occurrences Ratio Cents Error
from 6/5
C–E
G–B
[math]\displaystyle{ 5/4 }[/math] 386.31371 +0.00000 C–E♭
C♯–E
G–B♭
G♯–B
[math]\displaystyle{ 32/27 }[/math] 294.13500 −21.50629
D–F♯
F–A
[math]\displaystyle{ \sqrt[3]{(45/32)^{2}} }[/math] 393.48248 +7.16876
A–C♯
B♭–D
[math]\displaystyle{ \sqrt[3]{32805/16384} }[/math] 400.65124 +14.33753 E♭–G♭
F–A♭
B♭–D♭
[math]\displaystyle{ 1215/1024 }[/math] 296.08872 −19.55257
D♭–F
G♭–B♭
A♭–C
B–D♯
[math]\displaystyle{ 512/405 }[/math] 405.86628 +19.55257
D–F
F♯–A
[math]\displaystyle{ \sqrt[3]{2048/1215} }[/math] 301.30376 −14.33753
A–C
B–D
[math]\displaystyle{ \sqrt[3]{128/75} }[/math] 308.47252 −7.16876
E♭–G
E–G♯
[math]\displaystyle{ 81/64 }[/math] 407.82000 +21.50629
E–G [math]\displaystyle{ 6/5 }[/math] 315.64129 +0.00000
Sizes and occurrences of whole tone and semitone
Whole tone Semitone
Occurrences Ratio Cents Occurrences Ratio Cents
D–E
G–A
[math]\displaystyle{ \sqrt[3]{25/18} }[/math] 189.57248 C–D♭
D♯–E
F–G♭
G–A♭
A♯–B
[math]\displaystyle{ 135/128 }[/math] 92.17872
C–D
A–B
[math]\displaystyle{ \sqrt[3]{45/32} }[/math] 196.74124
D♭–E♭
A♭–B♭
[math]\displaystyle{ 4096/3645 }[/math] 201.95628
D–E♭
G♯–A
[math]\displaystyle{ \sqrt[3]{1048576/885735} }[/math] 97.39376
E♭–F
E–F♯
F–G
F♯–G♯
B♭–C
B–C♯
[math]\displaystyle{ 9/8 }[/math] 203.91000
C♯–D
A–B♭
[math]\displaystyle{ \sqrt[3]{65536/54675} }[/math] 104.56252
E–F
F♯–G
B–C
[math]\displaystyle{ 16/15 }[/math] 111.73129

Music

31-tone circulating scales

Xenthirtyone is a 31-tone circulating scale based on 31 equal temperament. There are two circulating scales, named Xenthirtyone I and Xenthirtyone II, generated by a major third, which comes in three sizes, with twenty-two pure major thirds, eight 1/4-Würschmidt-comma-stretched major thirds, and one luna-comma-stretched major third.

Xenthirtyone I

! xenthirtyone1.scl
!
Xenthirtyone I, Xenllium's 31-tone circulating scale
31
!
128/125
73.53374935096
16/15
2048/1875
262144/234375
9375/8192
75/64
6/5
348.11617794602
5/4
32/25
462.70878570247
4/3
512/375
65536/46875
46875/32768
375/256
3/2
737.29121429753
25/16
8/5
851.88382205398
5/3
128/75
16384/9375
234375/131072
1875/1024
15/8
1126.46625064904
125/64
2/1

Xenthirtyone II

! xenthirtyone2.scl
!
Xenthirtyone II, Xenllium's 31-tone circulating scale
31
!
128/125
79.25639432431
117.45393024313
155.65146616195
262144/234375
9375/8192
271.72110610838
309.91864202720
348.11617794602
5/4
32/25
465.57010818915
503.76764410797
541.96518002679
65536/46875
46875/32768
658.03481997321
696.23235589203
734.42989181085
25/16
8/5
851.88382205398
890.08135797280
928.27889389162
16384/9375
234375/131072
1044.34853383805
1082.54606975687
1120.74360567569
125/64
2/1