10edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
No edit summary
Tags: Mobile edit Mobile web edit
No edit summary
Line 5: Line 5:
| | Degrees
| | Degrees
| | Cents
| | Cents
|Hekts
| | Approximate Ratios
| | Approximate Ratios
|-
|-
| | 0
| | 0
| | 0
| colspan="2"| 0
| | <span style="color: #660000;">[[1/1]]</span>
| | <span style="color: #660000;">[[1/1]]</span>
|-
|-
| | 1
| | 1
| | 190.196
| | 190.196
|130
| | [[10/9]], [[28/25]]
| | [[10/9]], [[28/25]]
|-
|-
| | 2
| | 2
| | 380.391
| | 380.391
|260
| | <span style="color: #660000;">[[5/4]]</span>
| | <span style="color: #660000;">[[5/4]]</span>
|-
|-
| | 3
| | 3
| | 570.587
| | 570.587
|390
| | [[7/5]]
| | [[7/5]]
|-
|-
| | 4
| | 4
| | 760.782
| | 760.782
|520
| | <span style="color: #660000;">[[14/9]]</span>
| | <span style="color: #660000;">[[14/9]]</span>
|-
|-
| | 5
| | 5
| | 950.978
| | 950.978
|650
| | 45/26, [[26/15]]
| | 45/26, [[26/15]]
|-
|-
| | 6
| | 6
| | 1141.173
| | 1141.173
|780
| | <span style="color: #660000;">[[27/14]]</span>
| | <span style="color: #660000;">[[27/14]]</span>
|-
|-
| | 7
| | 7
| | 1331.369
| | 1331.369
|910
| | [[15/7]] ([[15/14]] plus an octave)
| | [[15/7]] ([[15/14]] plus an octave)
|-
|-
| | 8
| | 8
| | 1521.564
| | 1521.564
|1040
| | [[12/5]] (<span style="color: #660000;">[[6/5]]</span> plus an octave)
| | [[12/5]] (<span style="color: #660000;">[[6/5]]</span> plus an octave)
|-
|-
| | 9
| | 9
| | 1711.760
| | 1711.760
|1170
| | [[27/20|27/10]]
| | [[27/20|27/10]]
|-
|-
| | 10
| | 10
| | 1901.955
| | 1901.955
|1300
| | [[3/1]]
| | [[3/1]]
|}
|}

Revision as of 17:09, 10 April 2019

10EDT is the equal division of the third harmonic (tritave) into ten parts of 190.1955 cents each, corresponding to 6.3093 edo. It is related to the pocus temperament, which tempers out 169/168, 225/224, and 245/243 in the 2.3.5.7.13 subgroup.

Degrees Cents Hekts Approximate Ratios
0 0 1/1
1 190.196 130 10/9, 28/25
2 380.391 260 5/4
3 570.587 390 7/5
4 760.782 520 14/9
5 950.978 650 45/26, 26/15
6 1141.173 780 27/14
7 1331.369 910 15/7 (15/14 plus an octave)
8 1521.564 1040 12/5 (6/5 plus an octave)
9 1711.760 1170 27/10
10 1901.955 1300 3/1

10edt, like 5edt, has very accurate 5-limit harmony for such a small number of steps per tritave. 10edt introduces some new harmonic properties though; notably the 571 cent tritone which can function as 7/5. It also splits the major third in half, categorizing this tuning as a fringe variety of "meantone" temperament.