Kite's Genchain mode numbering: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
TallKite (talk | contribs)
No edit summary
TallKite (talk | contribs)
m TallKite moved page Genchain mode numbering to Kite's Genchain mode numbering: Editor VectorGraphics has repeatedly edited pages I've written about my own research and inserted misinformation. On discord he is openly hostile to me. This move is necessary to avoid a toxic work environment for me.
 
(15 intermediate revisions by 2 users not shown)
Line 1: Line 1:
__FORCETOC__
'''Genchain mode numbering''' ('''GMN''' for short) provides a way to name MOS, MODMOS and even non-MOS rank-2 scales and modes systematically. Like [[Modal UDP notation]], it starts with the convention of using ''some-temperament-name''[''some-number''] to create a generator-chain, and adds a way to number each mode uniquely. It also applies to abstract MOS patterns like 5L 3s.
=MOS scales=


'''Mode Numbers''' provide a way to name MOS, MODMOS and even non-MOS rank-2 scales and modes systematically. Like [[Modal_UDP_Notation|Modal UDP notation]], it starts with the convention of using ''some-temperament-name''[''some-number''] to create a generator-chain, and adds a way to number each mode uniquely.
This mode notation system was designed by [[Kite Giedraitis]].


[[MOSScales|MOS scales]] are formed from a segment of the [[periods_and_generators|generator-chain]], or genchain. The first note in the genchain is the tonic of the 1st mode, the 2nd note is the tonic of the 2nd mode, etc., somewhat analogous to harmonica positions.
== MOS scales ==
[[MOS scale]]s are formed from a segment of the [[periods_and_generators|generator-chain]], or genchain. The first note in the genchain is the tonic of the 1st mode, the 2nd note is the tonic of the 2nd mode, etc., somewhat analogous to harmonica positions.


For example, here are all the modes of [[Meantone|'''Meantone''']][7], using ~3/2 as the generator. The Ls pattern is divided into two halves, for readability. The first half runs from the tonic to the 5th. and the second half runs from the 5th to the 8ve.
For example, here are all the modes of [[Meantone]][7], using ~3/2 as the generator. On this page, the Ls pattern is divided into two halves, for readability. The first half runs from the tonic to the 5th. and the second half runs from the 5th to the 8ve.


{| class="wikitable"
{| class="wikitable"
|+ Meantone[7] modes on white keys
|-
|-
! | old scale name
! | old scale name
Line 58: Line 59:
| | F C G D A E <u>'''B'''</u>
| | F C G D A E <u>'''B'''</u>
|}
|}
4th Meantone[7] is spoken as "fourth meantone heptatonic", or possibly "fourth meantone seven". If in D, as above, it would be "D fourth meantone heptatonic".
 
4th Meantone[7] is spoken as "fourth meantone heptatonic", or possibly "fourth meantone seven". If in D, as above, it would be "D fourth meantone heptatonic". The term GMN can also be read as genchain mode <u>number</u>, and can refer to the numbers 1st, 2nd, 3rd etc., as in "Dorian's GMN is 4".


The same seven modes, all with C as the tonic, to illustrate the difference between modes. Adjacent modes differ by only one note. The modes proceed from sharper (Lydian) to flatter (Locrian).
The same seven modes, all with C as the tonic, to illustrate the difference between modes. Adjacent modes differ by only one note. The modes proceed from sharper (Lydian) to flatter (Locrian).


{| class="wikitable"
{| class="wikitable"
|+ Meantone[7] modes in C
|-
|-
! | old scale name
! | old scale name
Line 113: Line 116:
|}
|}


The octave inverse of a generator is also a generator. To avoid ambiguity in mode numbers, the smaller of the two generators is chosen. An exception is made for 3/2, which is preferred over 4/3 for historical reasons (see below in "Rationale"). '''<u>Unlike modal UDP notation, the generator isn't always [[Chroma|chroma-positive]]</u>.''' There are several disadvantages of only using chroma-positive generators. See the critique of UDP at the end of this article.
The octave inverse of a generator is also a generator. To avoid ambiguity in mode numbers, the smaller of the two generators is chosen. An exception is made for 3/2, which is preferred over 4/3 for historical reasons (see below in [[#Rationale|§&nbsp;Rationale]]). Unlike modal UDP notation, the generator isn't always [[Chroma|chroma-positive]]. There are several disadvantages of only using chroma-positive generators. See the critique of UDP in the [[#Rationale|§&nbsp;Rationale]] section below.


Pentatonic meantone scales:
Pentatonic meantone scales:


{| class="wikitable"
{| class="wikitable"
|+ Meantone[5] modes
|-
|-
! | old scale name
! | old scale name
Line 159: Line 163:


{| class="wikitable"
{| class="wikitable"
|+ Meantone[12] modes
|-
|-
! | scale name
! | scale name
Line 166: Line 171:
|-
|-
| | 1st Meantone[12]
| | 1st Meantone[12]
| | sLsL sLL sLsLL
| | sLsLsLL sLsLL
| | C C# D D# E E# F# G G# A A# B C
| | C C# D D# E E# F# G G# A A# B C
| | <u>'''C'''</u> G D A E B F# C# G# D# A# E#
| | <u>'''C'''</u> G D A E B F# C# G# D# A# E#
|-
|-
| | 2nd Meantone[12]
| | 2nd Meantone[12]
| | sLsL LsL sLsLL
| | sLsLLsL sLsLL
| | C C# D D# E F F# G G# A A# B C
| | C C# D D# E F F# G G# A A# B C
| | F <u>'''C'''</u> G D A E B F# C# G# D# A#
| | F <u>'''C'''</u> G D A E B F# C# G# D# A#
|-
|-
| | 3rd Meantone[12]
| | 3rd Meantone[12]
| | sLsL LsL sLLsL
| | sLsLLsL sLLsL
| | C C# D D# E F F# G G# A Bb B C
| | C C# D D# E F F# G G# A Bb B C
| | Bb F <u>'''C'''</u> G D A E B F# C# G# D#
| | Bb F <u>'''C'''</u> G D A E B F# C# G# D#
|-
|-
| | 4th Meantone[12]
| | 4th Meantone[12]
| | sLLs LsL sLLsL
| | sLLsLsL sLLsL
| | C C# D Eb E F F# G G# A Bb B C
| | C C# D Eb E F F# G G# A Bb B C
| | Eb Bb F <u>'''C'''</u> G D A E B F# C# G#
| | Eb Bb F <u>'''C'''</u> G D A E B F# C# G#
|-
|-
| | 5th Meantone[12]
| | 5th Meantone[12]
| | sLLs LsL LsLsL
| | sLLsLsL LsLsL
| | C C# D Eb E F F# G Ab A Bb B C
| | C C# D Eb E F F# G Ab A Bb B C
| | Ab Eb Bb F <u>'''C'''</u> G D A E B F# C#
| | Ab Eb Bb F <u>'''C'''</u> G D A E B F# C#
|-
|-
| | 6th Meantone[12]
| | 6th Meantone[12]
| | LsLs LsL LsLsL
| | LsLsLsL LsLsL
| | C Db D Eb E F F# G Ab A Bb B C
| | C Db D Eb E F F# G Ab A Bb B C
| | Db Ab Eb Bb F <u>'''C'''</u> G D A E B F#
| | Db Ab Eb Bb F <u>'''C'''</u> G D A E B F#
|-
|-
| | 7th Meantone[12]
| | 7th Meantone[12]
| | LsLs LLs LsLsL
| | LsLsLLs LsLsL
| | C Db D Eb E F Gb G Ab A Bb B C
| | C Db D Eb E F Gb G Ab A Bb B C
| | Gb Db Ab Eb Bb F <u>'''C'''</u> G D A E B
| | Gb Db Ab Eb Bb F <u>'''C'''</u> G D A E B
Line 205: Line 210:
| |  
| |  
|}
|}
'''[[Porcupine]] aka Triyo''' has a [[pergen]] of (P8, P4/3) and a generator of vM2 = ~10/9. Porcupine[7] modes, using [[Ups and Downs Notation|ups and downs notation]]. Because the generator is a 2nd, the genchain resembles the scale.  
 
[[Porcupine]] aka Triyo has a [[pergen]] of (P8, P4/3) and a generator of ~10/9, notated as a vM2 or a ^^m2 using [[ups and downs notation]]. The [[Enharmonic unisons in ups and downs notation|enharmonic unison]] is v<sup>3</sup>A1. Because the generator is a 2nd, the genchain resembles the scale.


{| class="wikitable"
{| class="wikitable"
|+ Porcupine[7]/Triyo[7] modes
|-
|-
! | scale name
! | scale name
Line 218: Line 225:
|1st Triyo[7]
|1st Triyo[7]
| | ssss ssL
| | ssss ssL
| | C Dv Eb^ F Gv Ab^ Bb C
| | C vD ^Eb F vG ^Ab Bb C
| | <u>'''C'''</u> Dv Eb^ F Gv Ab^ Bb
| | <u>'''C'''</u> vD ^Eb F vG ^Ab Bb
|-
|-
| | 2nd Porcupine[7]
| | 2nd Porcupine[7]
|2nd Triyo[7]
|2nd Triyo[7]
| | ssss sLs
| | ssss sLs
| | C Dv Eb^ F Gv Ab^ Bb^ C
| | C vD ^Eb F vG ^Ab ^Bb C
| | Bb^ <u>'''C'''</u> Dv Eb^ F Gv Ab^
| | ^Bb <u>'''C'''</u> vD ^Eb F vG ^Ab
|-
|-
| | 3rd Porcupine[7]
| | 3rd Porcupine[7]
|3rd Triyo[7]
|3rd Triyo[7]
| | ssss Lss
| | ssss Lss
| | C Dv Eb^ F Gv Av Bb^ C
| | C vD ^Eb F vG vA ^Bb C
| | Av Bb^ <u>'''C'''</u> Dv Eb^ F Gv
| | vA ^Bb <u>'''C'''</u> vD ^Eb F vG
|-
|-
| | 4th Porcupine[7]
| | 4th Porcupine[7]
|4th Triyo[7]
|4th Triyo[7]
| | sssL sss
| | sssL sss
| | C Dv Eb^ F G Av Bb^ C
| | C vD ^Eb F G vA ^Bb C
| | G Av Bb^ <u>'''C'''</u> Dv Eb^ F
| | G vA ^Bb <u>'''C'''</u> vD ^Eb F
|-
|-
| | 5th Porcupine[7]
| | 5th Porcupine[7]
|5th Triyo[7]
|5th Triyo[7]
| | ssLs sss
| | ssLs sss
| | C Dv Eb^ F^ G Av Bb^ C
| | C vD ^Eb ^F G vA ^Bb C
| style="text-align:center;" | F^ G Av Bb^ <u>'''C'''</u> Dv Eb^
| style="text-align:center;" | ^F G vA ^Bb <u>'''C'''</u> vD ^Eb
|-
|-
| | 6th Porcupine[7]
| | 6th Porcupine[7]
|6th Triyo[7]
|6th Triyo[7]
| | sLss sss
| | sLss sss
| | C Dv Ev F^ G Av Bb^ C
| | C vD vE ^F G vA ^Bb C
| | Ev F^ G Av Bb^ <u>'''C'''</u> Dv
| | vE ^F G vA ^Bb <u>'''C'''</u> vD
|-
|-
| | 7th Porcupine[7]
| | 7th Porcupine[7]
|7th Triyo[7]
|7th Triyo[7]
| | Lsss sss
| | Lsss sss
| | C D Ev F^ G Av Bb^ C
| | C D vE ^F G vA ^Bb C
| | D Ev F^ G Av Bb^ <u>'''C'''</u>
| | D vE ^F G vA ^Bb <u>'''C'''</u>
|}
|}
'''[[Sensi]] aka Sepgu''' has pergen (P8, WWP5/7). The ~9/7 generator is a ^<sup>3</sup>d4 = v<sup>4</sup>A3, and the enharmonic is a ^<sup>7</sup>dd2. Sensi[8] modes:
 
[[Sensi]] aka Sepgu has pergen (P8, ccP5/7). The ~9/7 generator is both a ^<sup>3</sup>d4 and a v<sup>4</sup>A3, and the [[Enharmonic unisons in ups and downs notation|enharmonic unison]] is ^<sup>7</sup>dd2.
{| class="wikitable"
{| class="wikitable"
|+ Sensi[8]/Sepgu[8] modes
|-
|-
! | scale name
! | scale name
Line 268: Line 277:
| | 1st Sensi[8]
| | 1st Sensi[8]
|1st Sepgu[8]
|1st Sepgu[8]
| | ssL ssL sL
| | ssLss LsL
| | C ^^Db ^<sup>4</sup>Ebb ^<sup>3</sup>Fb vvF#    G    vA ^Bb C
| | C ^^Db ^<sup>4</sup>Ebb ^<sup>3</sup>Fb vvF#    G    vA ^Bb C
| | <u>'''C'''</u> ^<sup>3</sup>Fb vA ^^Db vvF# ^Bb ^<sup>4</sup>Ebb G
| | <u>'''C'''</u> ^<sup>3</sup>Fb vA ^^Db vvF# ^Bb ^<sup>4</sup>Ebb G
Line 274: Line 283:
| | 2nd Sensi[8]
| | 2nd Sensi[8]
|2nd Sepgu[8]
|2nd Sepgu[8]
| | ssL sL ssL
| | ssLsL ssL
| | C ^^Db ^<sup>4</sup>Ebb ^<sup>3</sup>Fb vvF# v<sup>3</sup>G#  vA  ^Bb C
| | C ^^Db ^<sup>4</sup>Ebb ^<sup>3</sup>Fb vvF# v<sup>3</sup>G#  vA  ^Bb C
| | v<sup>3</sup>G# <u>'''C'''</u> ^<sup>3</sup>Fb vA ^^Db vvF# ^Bb ^<sup>4</sup>Ebb
| | v<sup>3</sup>G# <u>'''C'''</u> ^<sup>3</sup>Fb vA ^^Db vvF# ^Bb ^<sup>4</sup>Ebb
Line 280: Line 289:
| | 3rd Sensi[8]
| | 3rd Sensi[8]
|3rd Sepgu[8]
|3rd Sepgu[8]
| | sL ssL ssL
| | sLssL ssL
| | C ^^Db  ^Eb  ^<sup>3</sup>Fb vvF# v<sup>3</sup>G#  vA  ^Bb C
| | C ^^Db  ^Eb  ^<sup>3</sup>Fb vvF# v<sup>3</sup>G#  vA  ^Bb C
| | ^Eb v<sup>3</sup>G# <u>'''C'''</u> ^<sup>3</sup>Fb vA ^^Db vvF# ^Bb
| | ^Eb v<sup>3</sup>G# <u>'''C'''</u> ^<sup>3</sup>Fb vA ^^Db vvF# ^Bb
Line 286: Line 295:
| | 4th Sensi[8]
| | 4th Sensi[8]
|4th Sepgu[8]
|4th Sepgu[8]
| | sL ssL sL s
| | sLssL sLs
| | C ^^Db  ^Eb  ^<sup>3</sup>Fb vvF# v<sup>3</sup>G#  vA  vvB C
| | C ^^Db  ^Eb  ^<sup>3</sup>Fb vvF# v<sup>3</sup>G#  vA  vvB C
| | vvB ^Eb v<sup>3</sup>G# <u>'''C'''</u> ^<sup>3</sup>Fb vA ^^Db vvF#
| | vvB ^Eb v<sup>3</sup>G# <u>'''C'''</u> ^<sup>3</sup>Fb vA ^^Db vvF#
Line 292: Line 301:
| | 5th Sensi[8]
| | 5th Sensi[8]
|5th Sepgu[8]
|5th Sepgu[8]
| | sL sL ssL s
| | sLsLs sLs
| | C ^^Db  ^Eb  ^<sup>3</sup>Fb ^^Gb v<sup>3</sup>G#  vA  vvB C
| | C ^^Db  ^Eb  ^<sup>3</sup>Fb ^^Gb v<sup>3</sup>G#  vA  vvB C
| | ^^Gb vvB ^Eb v<sup>3</sup>G# <u>'''C'''</u> ^<sup>3</sup>Fb vA ^^Db
| | ^^Gb vvB ^Eb v<sup>3</sup>G# <u>'''C'''</u> ^<sup>3</sup>Fb vA ^^Db
Line 298: Line 307:
| | 6th Sensi[8]
| | 6th Sensi[8]
|6th Sepgu[8]
|6th Sepgu[8]
| | Lss Lss Ls
| | LssLs sLs
| | C  vD    ^Eb  ^<sup>3</sup>Fb ^^Gb v<sup>3</sup>G#  vA  vvB C
| | C  vD    ^Eb  ^<sup>3</sup>Fb ^^Gb v<sup>3</sup>G#  vA  vvB C
| | vD ^^Gb vvB ^Eb v<sup>3</sup>G# <u>'''C'''</u> ^<sup>3</sup>Fb vA
| | vD ^^Gb vvB ^Eb v<sup>3</sup>G# <u>'''C'''</u> ^<sup>3</sup>Fb vA
Line 304: Line 313:
| | 7th Sensi[8]
| | 7th Sensi[8]
|7th Sepgu[8]
|7th Sepgu[8]
| | Lss Ls Lss
| | LssLs Lss
| | C  vD    ^Eb  ^<sup>3</sup>Fb ^^Gb v<sup>3</sup>G# v<sup>4</sup>A# vvB C
| | C  vD    ^Eb  ^<sup>3</sup>Fb ^^Gb v<sup>3</sup>G# v<sup>4</sup>A# vvB C
| | v<sup>4</sup>A# vD ^^Gb vvB ^Eb v<sup>3</sup>G# <u>'''C'''</u> ^<sup>3</sup>Fb
| | v<sup>4</sup>A# vD ^^Gb vvB ^Eb v<sup>3</sup>G# <u>'''C'''</u> ^<sup>3</sup>Fb
Line 310: Line 319:
| | 8th Sensi[8]
| | 8th Sensi[8]
|8th Sepgu[8]
|8th Sepgu[8]
| | Ls Lss Lss
| | LsLss Lss
| | C  vD    ^Eb    F  ^^Gb v<sup>3</sup>G# v<sup>4</sup>A# vvB C
| | C  vD    ^Eb    F  ^^Gb v<sup>3</sup>G# v<sup>4</sup>A# vvB C
| | F v<sup>4</sup>A# vD ^^Gb vvB ^Eb v<sup>3</sup>G# <u>'''C'''</u>
| | F v<sup>4</sup>A# vD ^^Gb vvB ^Eb v<sup>3</sup>G# <u>'''C'''</u>
|}
|}
=MODMOS scales=


[[MODMOS scales]] are named as chromatic alterations of a MOS scale, similar to UDP notation. The ascending melodic minor scale is 5th Meantone[7] #6 #7. The "#" symbol means moved N steps forwards on the genchain when the generator is chroma-positive, and N steps backwards when it isn't. This ensures a higher pitch. Note that Meantone[5] is chroma-negative. However, an exception is made for superflat edos like 16edo when the generator is a 3/2 fifth, because in those edos, G# is actually flat of G. Another exception is when the generator is close to the "tipping point" between chroma-positive and chroma-negative. A good alternative in these and other situations, including non-heptatonic and non-fifth-generated scales, is to use + for forwards in the genchain and - for backwards, as in 5th Meantone[7] +6 +7.
== MODMOS scales ==
[[MODMOS scale]]s are named as chromatic alterations of a MOS scale, similar to UDP notation. The ascending melodic minor scale is 5th Meantone[7] #6 #7. The "#" symbol means moved N steps forwards on the genchain when the generator is chroma-positive, and N steps backwards when it isn't. This ensures a higher pitch. (Note that Meantone[5] is chroma-negative, more on this below.) However, an exception is made for superflat edos like 16edo when the generator is a 3/2 fifth, because in those edos, G# is actually flat of G. Another exception is when the generator is close to the "tipping point" between chroma-positive and chroma-negative. A good alternative in these and other situations, including non-heptatonic and non-fifth-generated scales, is to use + for forwards in the genchain and - for backwards, as in 5th Meantone[7] +6 +7.


A MODMOS scale can have alternate names. The ascending melodic minor scale could also be called 2nd Meantone[7] b3 (major scale with a minor 3rd), or as 4th Meantone[7] #7 (dorian with a major 7th).  
A MODMOS scale can have alternate names. The ascending melodic minor scale could also be called 2nd Meantone[7] b3 (major scale with a minor 3rd), or as 4th Meantone[7] #7 (dorian with a major 7th).  


'''Meantone''' MODMOS scales, with alternative names included only if they don't have more alterations than the original:
Meantone MODMOS scales, with alternative names in italics and parentheses. Alternatives that have more alterations than the original aren't listed:


{| class="wikitable"
{| class="wikitable"
|+ Meantone[7] MODMOS scale examples
|-
|-
! | old scale name
! | old scale name
! | new scale name
! | new scale name
! | LMs pattern
! | Lms pattern
! | example in A
! | example in A
! | genchain
! | genchain
Line 332: Line 342:
| | Harmonic minor
| | Harmonic minor
| | 5th Meantone[7] #7
| | 5th Meantone[7] #7
| | MsMM sLs
| | msmm sLs
| | A B C D E F G# A
| | A B C D E F G# A
| | F C * D <u>'''A'''</u> E B * * G#
| | F C * D <u>'''A'''</u> E B * * G#
Line 342: Line 352:
| | C * D <u>'''A'''</u> E B F# * G#
| | C * D <u>'''A'''</u> E B F# * G#
|-
|-
| style="text-align:center;" | (Major with b3)
| style="text-align:center;" | ''(Major with b3)''
| | 2nd Meantone[7] b3
| | ''(2nd Meantone[7] b3)''
| style="text-align:center;" | "
| style="text-align:center;" | "
| style="text-align:center;" | "
| style="text-align:center;" | "
| style="text-align:center;" | "
| style="text-align:center;" | "
|-
|-
| style="text-align:center;" | (Dorian with #7)
| style="text-align:center;" | ''(Dorian with #7)''
| | 4th Meantone[7] #7
| | ''(4th Meantone[7] #7)''
| style="text-align:center;" | "
| style="text-align:center;" | "
| style="text-align:center;" | "
| style="text-align:center;" | "
Line 356: Line 366:
| | Double harmonic minor
| | Double harmonic minor
| | 5th Meantone[7] #4 #7
| | 5th Meantone[7] #4 #7
| | MsLs sLs
| | msLs sLs
| | A B C D# E F G# A
| | A B C D# E F G# A
| | F C * * <u>'''A'''</u> E B * * G# D#
| | F C * * <u>'''A'''</u> E B * * G# D#
|-
|-
| style="text-align:center;" | (Lydian with b3 b6)
| style="text-align:center;" | ''(Lydian with b3 b6)''
| | 1st Meantone[7] b3 b6
| | ''(1st Meantone[7] b3 b6)''
|"
|"
| style="text-align:center;" | "
| style="text-align:center;" | "
Line 368: Line 378:
| | Double harmonic major
| | Double harmonic major
| | 2nd Meantone[7] b2 b6
| | 2nd Meantone[7] b2 b6
| | sLsM sLs
| | sLsm sLs
| | A Bb C# D E F G# A
| | A Bb C# D E F G# A
| | Bb F * * D <u>'''A'''</u> E * * C# G#
| | Bb F * * D <u>'''A'''</u> E * * C# G#
|-
|-
| style="text-align:center;" | (Phrygian with #3 #7)
| style="text-align:center;" | ''(Phrygian with #3 #7)''
| | 6th Meantone[7] #3 #7
| | ''(6th Meantone[7] #3 #7)''
| style="text-align:center;" | "
| style="text-align:center;" | "
| style="text-align:center;" | "
| style="text-align:center;" | "
Line 380: Line 390:
| | <span style="">Hungarian gypsy </span>minor
| | <span style="">Hungarian gypsy </span>minor
| | 5th Meantone[7] #4
| | 5th Meantone[7] #4
| | MsLs sMM
| | msLs smm
| | A B C D# E F G A
| | A B C D# E F G A
| | F C G * <u>'''A'''</u> E B * * * D#
| | F C G * <u>'''A'''</u> E B * * * D#
Line 386: Line 396:
| | Phrygian dominant
| | Phrygian dominant
| | 6th Meantone[7] #3
| | 6th Meantone[7] #3
| | sLsM sMM
| | sLsm smm
| | A Bb C# D E F G A
| | A Bb C# D E F G A
| | Bb F * G D <u>'''A'''</u> E * * C#
| | Bb F * G D <u>'''A'''</u> E * * C#
|}
|}
As can be seen from the genchains, or from the LMs patterns, the harmonic minor and the phrygian dominant are modes of each other, as are the double harmonic minor and the double harmonic major. Unfortunately the scale names do not indicate this.
As can be seen from the genchains, or from the LMs patterns, the harmonic minor and the phrygian dominant are modes of each other, as are the double harmonic minor and the double harmonic major. Unfortunately the scale names do not indicate this.


Line 396: Line 407:
Unlike MOS scales, adjacent MODMOS modes differ by more than one note. Harmonic minor modes:
Unlike MOS scales, adjacent MODMOS modes differ by more than one note. Harmonic minor modes:


1st Meantone[7] #2: C D# E F# G A B C <br>
* 1st Meantone[7] #2: C D# E F# G A B C
2nd Meantone[7] #:5 C D E F G# A B C<br>
* 2nd Meantone[7] #5: C D E F G# A B C
7th Meantone[7] b4 b7: C Db Eb Fb Gb Ab Bbb C (breaks the pattern, 7th mode not 3rd mode)<br>
* 7th Meantone[7] b4 b7: C Db Eb Fb Gb Ab Bbb C (breaks the pattern, 7th mode not 3rd mode)
4th Meantone[7] #4: C D Eb F# G A Bb C<br>
* 4th Meantone[7] #4: C D Eb F# G A Bb C
5th Meantone[7] #7: C D Eb F G Ab B C (harmonic minor)<br>
* 5th Meantone[7] #7: C D Eb F G Ab B C (harmonic minor)
6th Meantone[7] #3: C Db E F G Ab Bb C (phrygian dominant)<br>
* 6th Meantone[7] #3: C Db E F G Ab Bb C (phrygian dominant)
7th Meantone[7] #6: C Db Eb F Gb A Bb C
* 7th Meantone[7] #6: C Db Eb F Gb A Bb C


The 3rd scale breaks the pattern to avoid an altered tonic ("3rd Meantone[7] #1"). The Bbb is "b7" not "bb7" because the 7th mode is Locrian, and Bbb is only one semitone flat of the Locrian mode's minor 7th Bb.
The 3rd scale breaks the pattern to avoid an altered tonic ("3rd Meantone[7] #1"). The Bbb is "b7" not "bb7" because the 7th mode is Locrian, and Bbb is only one semitone flat of the Locrian mode's minor 7th Bb.
Line 408: Line 419:
Ascending melodic minor modes:
Ascending melodic minor modes:


1st Meantone[7] #5: C D E F# G# A B C<br>
* 1st Meantone[7] #5: C D E F# G# A B C
7th Meantone[7] b4: C Db Eb Fb Gb Ab Bb C (avoid "2nd Meantone[7] #1")<br>
* 7th Meantone[7] b4: C Db Eb Fb Gb Ab Bb C (avoid "2nd Meantone[7] #1")
3rd Meantone[7] #4: C D E F# G A Bb C<br>
* 3rd Meantone[7] #4: C D E F# G A Bb C
4th Meantone[7] #7: C D Eb F G A B C<br>
* 4th Meantone[7] #7: C D Eb F G A B C
5th Meantone[7] #3: C D E F G Ab Bb C<br>
* 5th Meantone[7] #3: C D E F G Ab Bb C
6th Meantone[7] #6: C Db Eb F G A Bb C<br>
* 6th Meantone[7] #6: C Db Eb F G A Bb C
7th Meantone[7] #2: C D Eb F Gb Ab Bb C
* 7th Meantone[7] #2: C D Eb F Gb Ab Bb C


'''Porcupine[7] MODMOS scales''', not including alternative names because they all modify the 3rd or the 5th.
Porcupine[7] aka Triyo[7] MODMOS scales, not including alternative names because they all modify the 3rd or the 5th.


{| class="wikitable"
{| class="wikitable"
|+ Porcupine[7]/Triyo[7] MODMOS scale examples
|-
|-
! | scale name
! | scale name
! | [[Color notation/Temperament Names|color name]]
! | [[Color notation/Temperament Names|color name]]
! | LMs pattern
! | Lms pattern
! | example in C
! | example in C
! | genchain
! | genchain
Line 429: Line 441:
|4th Triyo[7] #2
|4th Triyo[7] #2
|LsmL mmm
|LsmL mmm
|C D Eb^ F G Av Bb^ C
|C D ^Eb F G vA ^Bb C
|D * * G Av Bb^ <u>'''C'''</u> * Eb^ F
|D * * G vA ^Bb <u>'''C'''</u> * ^Eb F
|-
|-
|4th Porcupine[7] #2 b6
|4th Porcupine[7] #2 b6
|4th Triyo[7] #2 b6
|4th Triyo[7] #2 b6
|LsmL sLm
|LsmL sLm
|C D Eb^ F G Ab^ Bb^ C
|C D ^Eb F G ^Ab ^Bb C
|D * * G * Bb^ <u>'''C'''</u> * Eb^ F * Ab^
|D * * G * ^Bb <u>'''C'''</u> * ^Eb F* ^Ab
|-
|-
| | 4th Porcupine[7] b6
| | 4th Porcupine[7] b6
| |4th Triyo[7] b6
| |4th Triyo[7] b6
| | mmmL sLm
| | mmmL sLm
| | C Dv Eb^ F G Ab^ Bb^ C
| | C vD ^Eb F G ^Ab ^Bb C
| | G * Bb^ <u>'''C'''</u> Dv Eb^ F * Ab^
| | G * ^Bb <u>'''C'''</u> vD ^Eb F * ^Ab
|-
|-
|4th Porcupine[7] b6 b7
|4th Porcupine[7] b6 b7
|4th Triyo[7] b6 b7
|4th Triyo[7] b6 b7
|mmmL smL
|mmmL smL
|C Dv Eb^ F G Ab^ Bb C
|C vD ^Eb F G ^Ab Bb C
|G * * <u>'''C'''</u> Dv Eb^ F * Ab^ Bb
|G * * <u>'''C'''</u> vD ^Eb F * ^Ab Bb
|-
|-
| |5th Porcupine[7] #2
| |5th Porcupine[7] #2
| |5th Triyo[7] #2
| |5th Triyo[7] #2
| | LsLm mmm
| | LsLm mmm
| | C D Eb^ F^ G Av Bb^ C
| | C D ^Eb ^F G vA ^Bb C
| | D * F^ G Av Bb^ <u>'''C'''</u> * Eb^
| | D * ^F G vA ^Bb <u>'''C'''</u> * ^Eb
|-
|-
| | 6th Porcupine[7] b4
| | 6th Porcupine[7] b4
| |6th Triyo[7] b4
| |6th Triyo[7] b4
| | mLsL mmm
| | mLsL mmm
| | C Dv Ev F G Av Bb^ C
| | C vD vE F G vA ^Bb C
| | Ev * G Av Bb^ <u>'''C'''</u> Dv * F
| | vE * G vA ^Bb <u>'''C'''</u> vD * F
|-
|-
| |7th Porcupine[7] #6 #7
| |7th Porcupine[7] #6 #7
| |7th Triyo[7] #6 #7
| |7th Triyo[7] #6 #7
| |Lmmm Lms
| |Lmmm Lms
| | C D Ev F^ G A Bv C
| | C D vE ^F G A vB C
| | A Bv * D Ev F^ G * * <u>'''C'''</u>
| | A vB * D vE ^F G * * <u>'''C'''</u>
|-
|-
|7th Porcupine[7] #7
|7th Porcupine[7] #7
|7th Triyo[7] #7
|7th Triyo[7] #7
|Lmmm mLs
|Lmmm mLs
|C D Ev F^ G Av Bv C
|C D vE ^F G vA vB C
|Bv * D Ev F^ G Av * <u>'''C'''</u>
|vB * D vE ^F G vA * <u>'''C'''</u>
|-
|-
|7th Porcupine[7] b4 #7
|7th Porcupine[7] b4 #7
|7th Triyo[7] b4 #7
|7th Triyo[7] b4 #7
|LmsL mLs
|LmsL mLs
|C D Ev F G Av Bv C
|C D vE F G vA vB C
|Bv * D Ev * G Av * <u>'''C'''</u> * * F
|vB * D vE * G vA * <u>'''C'''</u> * * F
|-
|-
| | 7th Porcupine[7] b4
| | 7th Porcupine[7] b4
| |7th Triyo[7] b4
| |7th Triyo[7] b4
| | LmsL mmm
| | LmsL mmm
| | C D Ev F G Av Bb^ C
| | C D vE F G vA ^Bb C
| | D Ev * G Av Bb^ <u>'''C'''</u> * * F
| | D vE * G vA ^Bb <u>'''C'''</u> * * F
|}
|}
=Temperaments with split octaves=


If a rank-2 temperament's [[pergen]] has a split octave, the temperament has multiple genchains running in parallel, using ups and downs. In order to be a MOS scale, the parallel genchains must not only be the right length, and without any gaps, but also must line up exactly, so that each note has a neighbor immediately above and/or below. In other words, every column of the lattice must be complete.
== Temperaments with split octaves ==
If a rank-2 temperament's [[pergen]] has a split octave, the temperament has multiple genchains running in parallel. Using ups and downs notation, each genchain has its own height. There is a plain one, an up one, perhaps a down one, etc. In order to be a MOS scale, the parallel genchains must not only be the right length, and without any gaps, but also must line up exactly, so that each note has a neighbor immediately above and/or below. In other words, every column of the lattice generated by the 5th and the up must be complete. The number in the brackets becomes two numbers, and the Ls pattern as written here is grouped by period, using hyphens.


'''[[Srutal]] aka Diaschismatic aka Sagugu''' has a half-8ve period. All five Srutal[10] modes. Every other scale note has a down.
[[Srutal]] aka Diaschismatic aka Sagugu has a half-8ve period of ~45/32. All five Srutal[2x5] modes. Every other scale note has a down.


{| class="wikitable"
{| class="wikitable"
|+ Srutal[2x5]/Sagugu[2x5] modes
|-
|-
! | scale name
! | scale name
Line 501: Line 514:
! | 2nd genchain
! | 2nd genchain
|-
|-
| | 1st Srutal[10]
| | 1st Srutal[2x5]
| | 1st Sagugu[10]
| | 1st Sagugu[2x5]
| | ssssL-ssssL
| | ssssL-ssssL
| | C C#v D D#v E F#v G G#v A A#v C
| | C vC# D vD# E vF# G vG# A vA# C
| | <u>'''C'''</u> G D A E
| | <u>'''C'''</u> G D A E
| | F#v C#v G#v D#v A#v
| | vF# vC# vG# vD# vA#
|-
|-
| | 2nd Srutal[10]
| | 2nd Srutal[2x5]
| | 2nd Sagugu[10]
| | 2nd Sagugu[2x5]
| | sssLs-sssLs
| | sssLs-sssLs
| | C C#v D D#v F F#v G G#v A Bv C
| | C vC# D vD# F vF# G vG# A vB C
| | F <u>'''C'''</u> G D A
| | F <u>'''C'''</u> G D A
| | Bv F#v C#v G#v D#v
| | vB vF# vC# vG# vD#
|-
|-
| | 3rd Srutal[10]
| | 3rd Srutal[2x5]
| | 3rd Sagugu[10]
| | 3rd Sagugu[2x5]
| | ssLss-ssLss
| | ssLss-ssLss
| | C C#v D Ev F F#v G G#v Bb Bv C
| | C vC# D vE F vF# G vG# Bb vB C
| | Bb F <u>'''C'''</u> G D
| | Bb F <u>'''C'''</u> G D
| | Ev Bv F#v C#v G#v
| | vE vB vF# vC# vG#
|-
|-
| | 4th Srutal[10]
| | 4th Srutal[2x5]
| | 4th Sagugu[10]
| | 4th Sagugu[2x5]
| | sLsss-sLsss
| | sLsss-sLsss
| | C C#v Eb Ev F F#v G Av Bb Bv C
| | C vC# Eb vE F vF# G vA Bb vB C
| | Eb Bb F <u>'''C'''</u> G
| | Eb Bb F <u>'''C'''</u> G
| | Av Ev Bv F#v C#v
| | vA vE vB vF# vC#
|-
|-
| | 5th Srutal[10]
| | 5th Srutal[2x5]
| | 5th Sagugu[10]
| | 5th Sagugu[2x5]
| | Lssss-Lssss
| | Lssss-Lssss
| | C Dv Eb Ev F F#v Ab Av Bb Bv C
| | C vD Eb vE F vF# Ab vA Bb vB C
| | Ab Eb Bb F <u>'''C'''</u>
| | Ab Eb Bb F <u>'''C'''</u>
| | Dv Av Ev Bv F#v
| | vD vA vE vB vF#
|}
|}


Srutal's period is written as a vA4, but could instead be written as an ^d5. The generator is written as a P5. If the period is a fraction of an octave, 3/2 is still preferred over 4/3, even though that makes the generator larger than the period. The generator could instead be written as ~16/15 (3/2 minus a period), because that would still create the same mode numbers and thus the same scale names. The first genchain of 1st Srutal[10] would be C C#v D D#v E, just like the first half of the scale.
Srutal's period is written as a vA4, but could instead be written as an ^d5. The generator is written as a P5. If the period is a fraction of an octave, 3/2 is still preferred over 4/3, even though that makes the generator larger than the period. The generator could instead be written as ~16/15 (3/2 minus a period), because that would still create the same mode numbers and thus the same scale names. The first genchain of 1st Srutal[2x5] would be C vC# D vD# E, just like the first half of the scale.


'''[[Octatonic_scale|Diminished]] aka Quadgu''' has a quarter-8ve period. The generator is ~3/2, which is equivalent to ~5/4 or ~25/24 or even ~9/5. The Diminished[8] scale has only two modes, because there are four very short genchains of only two notes. The comma is fifthward, so the 5th is flattened, and the 32/27 minor 3rd is > 300¢. Therefore the 300¢ period is narrower than a m3, and must be a vm3. The four genchains:
[[Augmented family|Augmented]] aka Trigu has a third-8ve period of ~5/4. The generator is ~3/2, which is equivalent to ~6/5. It could be thought of as ~16/15, but that would reverse the genchain direction and change all the mode numbers. The ~16/15 generator is not used, even though it is smaller, so that the genchain direction matches that of the pergen, which is (P8/3, P5).


Ebv ------- Bbv
{| class="wikitable"
 
|+ Augmented[3x3]/Trigu[3x3] modes
C ---------- G
|-
 
! | scale name
A^ --------- E^
! | [[Color notation/Temperament Names|color name]]
 
! | Ls pattern
F#^^ ------ C#^^
! | example in C
 
! | 1st chain
Using ~25/24 as the generator yields the same scales and mode numbers:
! | 2nd chain
 
! | 3rd chain
Ebv ------- E^
|-
| | 1st Augmented[3x3]
| | 1st Trigu[3x3]
| | Lss-Lss-Lss
| | C D ^Eb vE vF# G ^Ab ^Bb vB C
| style="text-align:center;" | <u>'''C'''</u> G D
| | vE vB vF#
| | ^Ab ^Eb ^Bb
|-
| | 2nd Augmented[3x3]
|2nd Trigu[3x3]
| | sLs-sLs-sLs
| | C ^Db ^Eb vE F G ^Ab vA vB C
| style="text-align:center;" | F <u>'''C'''</u> G
| | vA vE vB
| | ^Db ^Ab ^Eb
|-
|3rd Augmented[3x3]
|3rd Trigu[3x3]
|ssL-ssL-ssL
|C ^Db vD vE F ^Gb ^Ab vA Bb C
|Bb F <u>'''C'''</u>
|vD vA vE
|^Gb ^Db ^Ab
|}


C ---------- C#^^
'''[[Octatonic_scale|Diminished]] aka Quadgu''' has pergen (P8/4, P5) and a period of ~6/5. The generator is ~3/2, which is equivalent to ~5/4 or ~25/24. The generator can't be ~10/9, because that would change the mode numbers. The Diminished[4x2] scale has only two modes, because the four genchains have only two notes each. The comma is fifthward, thus the 5th is flattened, and the 32/27 minor 3rd is sharpened. Therefore the 300¢ period is narrower than a m3, and must be a vm3.
 
A^ --------- Bbv
 
F#^^ ------ G
 
Both Diminished[8] modes, using ups and downs:


{| class="wikitable"
{| class="wikitable"
|+ Diminished[4x2]/Quadgu[4x2] modes
|-
|-
! | scale name
! | scale name
! | [[Color notation/Temperament Names|color name]]
! | [[Color notation/Temperament Names|color name]]
! | sL pattern
! | Ls pattern
! | example in C
! | example in C
! | 1st chain
! | 1st chain
Line 572: Line 604:
! | 4th chain
! | 4th chain
|-
|-
| | 1st Diminished[8]
| | 1st Diminished[4x2]
| | 1st Quadgu[8]
| | 1st Quadgu[4x2]
| | sLsL sLsL
| | sL-sL-sL-sL
| | C C#^^ Ebv E^ F#^^ G A^ Bbv C
| | C ^^C# vEb ^E ^^F# G ^A vBb C
| style="text-align:center;" | <u>'''C'''</u> G
| style="text-align:center;" | <u>'''C'''</u> G
| | Ebv Bbv
| | vEb vBb
| | F#^^ C#^^
| | ^^F# ^^C#
| | A^ E^
| | ^A ^E
|-
|-
| | 2nd Diminished[8]
| | 2nd Diminished[4x2]
|2nd Quadgu[8]
|2nd Quadgu[4x2]
| | LsLs LsLs
| | Ls-Ls-Ls-Ls
| | C D^ Ebv F F#^^ Abv A^ B^^ C
| | C ^D vEb F ^^F# vAb ^A ^^B C
| style="text-align:center;" | F <u>'''C'''</u>
| style="text-align:center;" | F <u>'''C'''</u>
| | Abv Ebv
| | vAb vEb
| |B^^ F#^^
| |^^B ^^F#
| | D^ A^
| | ^D ^A
|}
|}


[[Blackwood|'''Blackwood''']] '''aka 5-edo+ya''' has a fifth-octave period of 240¢. The generator is a just 5/4 = 386¢. There are only two [[Blackwood]][10] modes. Ups and downs indicate the generator, not the period. Both Blackwood modes, using ups and downs:
Using ~25/24 as the generator yields the same scales and mode numbers. 1st Diminished[4x2] would have genchains  C – ^^C#, vEb – ^E, ^^F# – G and ^A – vBb, just like the scale.
 
[[Blackwood|'''Blackwood''']] '''aka Sawa+ya''' has a fifth-octave period of 240¢. The generator is a just 5/4 = 386¢. There are only two [[Blackwood]][5x2] modes. Ups and downs indicate the generator, not the period.


{| class="wikitable"
{| class="wikitable"
|+ Blackwood[5x2]/5edo+ya[5x2]
|-
|-
! | scale name
! | scale name
![[Color notation/Temperament Names|color name]]
![[Color notation/Temperament Names|color name]]
! | sL pattern
! | Ls pattern
! | example in C
! | example in C
! | genchains
! | genchains
|-
|-
| | 1st Blackwood[10]
| | 1st Blackwood[5x2]
|1st 5edo+ya[10]
|1st 5edo+ya[5x2]
| | Ls-Ls-Ls-Ls-Ls
| | Ls-Ls-Ls-Ls-Ls
| | C C#v D Ev F F#v G Av A Bv C
| | C vC# D vE F vF# G vA A vB C
| style="text-align:center;" | <u>'''C'''</u>-Ev, D-F#v, F-Av, G-Bv, A-C#v
| style="text-align:center;" | <u>'''C'''</u>-vE, D-vF#, F-vA, G-vB, A-vC#
|-
|-
| | 2nd Blackwood[10]
| | 2nd Blackwood[5x2]
|2nd 5-edo+ya[10]
|2nd 5edo+ya[5x2]
| | sL-sL-sL-sL-sL
| | sL-sL-sL-sL-sL
| | C C^ D Eb^ F F^ G Ab^ A Bb^ C
| | C ^C D ^Eb F ^F G ^Ab A ^Bb C
| style="text-align:center;" | Ab^-<u>'''C'''</u>, Bb^-D, C^-F, Eb^-G, F^-A
| style="text-align:center;" | ^Ab-<u>'''C'''</u>, ^Bb-D, ^C-F, ^Eb-G, ^F-A
|}
|}


=Other rank-2 scales=
== Other rank-2 scales ==
 
These are scales that are neither MOS nor MODMOS. Some scales have too many or too few notes. If they have an unbroken genchain, they can be named Meantone[6], Meantone[8], etc. But if there are chromatic alterations, and the genchain has gaps, there's no clear way to number the notes, and no clear way to name the scale. Such a scale must be named as a MOS scale with notes added or removed, using "add" and "no", analogous to chord names. As with MODMOS scales, there is often more than one name for a scale.
These are scales that are neither MOS nor MODMOS. Some scales have too many or too few notes. If they have an unbroken genchain, they can be named Meantone[6], Meantone[8], etc. But if there are chromatic alterations, and the genchain has gaps, there's no clear way to number the notes, and no clear way to name the scale. Such a scale must be named as a MOS scale with notes added or removed, using "add" and "no", analogous to chord names. As with MODMOS scales, there is often more than one name for a scale. Meantone examples:


{| class="wikitable"
{| class="wikitable"
|+ Non-MOS/MODMOS Meantone examples
|-
|-
! | scale
! | scale
! | genchain
! | genchain
! | name
! | name
! | sMLX pattern
! | smLX pattern
|-
|-
| | '''octotonic:'''
| | '''octotonic:'''
Line 633: Line 668:
| | F <u>'''C'''</u> G D A E B F#
| | F <u>'''C'''</u> G D A E B F#
| | C 2nd Meantone[8]
| | C 2nd Meantone[8]
| | LLMs MLLM
| | LLms mLLm
|-
|-
| | C D E F F# G A Bb C
| | C D E F F# G A Bb C
| | Bb F <u>'''C'''</u> G D A E * F#
| | Bb F <u>'''C'''</u> G D A E * F#
| | C 3rd Meantone[7] add #4
| | C 3rd Meantone[7] add #4
| | LLMs MLML
| | LLms mLmL
|-
|-
| | A B C D D# E F G# A
| | A B C D D# E F G# A
| | F C * D <u>'''A'''</u> E B * * G# D#
| | F C * D <u>'''A'''</u> E B * * G# D#
| | A 5th Meantone[7] #7 add #4
| | A 5th Meantone[7] #7 add #4
| | LMLs MMXM
| | LmLs mmXm
|-
|-
| | '''nonatonic:'''
| | '''nonatonic:'''
Line 653: Line 688:
| | G D <u>'''A'''</u> E B F# C# G# D#
| | G D <u>'''A'''</u> E B F# C# G# D#
| | A 3rd Meantone[9]
| | A 3rd Meantone[9]
| | LLMsM LMsM
| | LLmsm Lmsm
|-
|-
| | A B C D D# E F G G# A
| | A B C D D# E F G G# A
| | F C G D <u>'''A'''</u> E B * * G# D#
| | F C G D <u>'''A'''</u> E B * * G# D#
| | A 5th Meantone[7] add #4, #7
| | A 5th Meantone[7] add #4, #7
| | LMLsM MLsM
| | LmLsm mLsm
|-
|-
| | '''hexatonic:'''
| | '''hexatonic:'''
Line 668: Line 703:
| | <u>'''F'''</u> C G D A E
| | <u>'''F'''</u> C G D A E
| | F 1st Meantone[6]
| | F 1st Meantone[6]
| | MML MMs
| | mmL mms
|-
|-
| | G A C D E F# G
| | G A C D E F# G
| | C <u>'''G'''</u> D A E * F#
| | C <u>'''G'''</u> D A E * F#
| | G 2nd Meantone[7] no3
| | G 2nd Meantone[7] no3
| | MLM MMs
| | mLm mms
|-
|-
| | '''pentatonic:'''
| | '''pentatonic:'''
Line 683: Line 718:
| | <u>'''F'''</u> C G * A E
| | <u>'''F'''</u> C G * A E
| | F 2nd Meantone[7] no4 no6
| | F 2nd Meantone[7] no4 no6
| | MML Xs
| | mmL Xs
|-
|-
| style="text-align:center;" | "
| style="text-align:center;" | "
| style="text-align:center;" | "
| style="text-align:center;" | "  
| | F 1st Meantone[7] no4 no6
| | F 1st Meantone[7] no4 no6
| | "
| | "
Line 693: Line 728:
| | F C * * <u>'''A'''</u> E B
| | F C * * <u>'''A'''</u> E B
| | A 5th Meantone[7] no4 no7
| | A 5th Meantone[7] no4 no7
| | MsL sL
| | msL sL
|}
|}


Line 700: Line 735:
Another possibility is a scale that would be MOS, but the generator is too sharp or flat. For example, a genchain F C G D A E B of 8\13 fifths makes an out-of-order scale A C B D F E G A. This scale is best named as Meantone[5] with added notes: Which brings us to...
Another possibility is a scale that would be MOS, but the generator is too sharp or flat. For example, a genchain F C G D A E B of 8\13 fifths makes an out-of-order scale A C B D F E G A. This scale is best named as Meantone[5] with added notes: Which brings us to...


=Non-heptatonic scales=
== Non-heptatonic scales ==
 
As long as we stick to MOS scales, terms like Meantone[5] or Meantone[6] are fine. But when we alter, add or drop notes, we need to define what something like "#5" means in a pentatonic or hexatonic context.
As long as we stick to MOS scales, terms like Meantone[5] or Meantone[6] are fine. But when we alter, add or drop notes, we need to define what something like "#5" means in a pentatonic or hexatonic context.


If the scale is written using heptatonically using 7 note names, the degree numbers are heptatonic. C D E G A# is written 1st Meantone[5] #6. If the scale were written pentatonically using 5 note names, perhaps J K L M #N, it would be 1st Meantone[5] #5. If discussing scales in the abstract without reference to any note names, one need to specify which type of numbering is being used.
If the scale is written heptatonically using 7 note names, the degree numbers are heptatonic. C D E G A# is written 1st Meantone[5] #6. If the scale were written pentatonically using 5 note names, perhaps J K L M #N, it would be 1st Meantone[5] #5. If discussing scales in the abstract without reference to any note names, one needs to specify which type of numbering is being used.


The scale of 8\13 fifths A C B D F E G A mentioned above can't be notated with fifth-based heptatonic and requires pentatonic notation. Because the pentatonic fifth is chroma-negative, the fifthward side of the genchain is flat and the fourthwards side is sharp (assuming a fifth &lt; 720¢). Use "+" for fifthwards and "-" for fourthwards.
The scale of 8\13 fifths A C B D F E G A mentioned above can't be notated with fifth-based heptatonic and requires pentatonic notation. Because the pentatonic fifth is chroma-negative, the fifthward side of the genchain is flat and the fourthward side is sharp (assuming a fifth &lt; 720¢). Use "+" for fifthwards and "-" for fourthwards.


Using J K L M N for note names, and arbitrarily centering the genchain on L, we get this genchain:
Using J K L M N for note names, and arbitrarily centering the genchain on L, we get this genchain:
Line 715: Line 749:


and these standard modes:
and these standard modes:
 
* L 1st Meantone[5] = L M +N J +K L
L 1st Meantone[5] = L M +N J +K L<br>
* L 2nd Meantone[5] = L M N J +K L
L 2nd Meantone[5] = L M N J +K L<br>
* L 3rd Meantone[5] = L M N J K L
L 3rd Meantone[5] = L M N J K L<br>
* L 4th Meantone[5] = L -M N J K L
L 4th Meantone[5] = L -M N J K L<br>
* L 5th Meantone[5] = L -M N -J K L
L 5th Meantone[5] = L -M N -J K L


The A C B D F E G A scale becomes L M -M N J +K K L, which has 3 possible names:
The A C B D F E G A scale becomes L M -M N J +K K L, which has 3 possible names:
 
* L 3rd Meantone[5] add -2, +5
L 3rd Meantone[5] add -2, +5<br>
* L 2nd Meantone[5] add -2, -5
L 2nd Meantone[5] add -2, -5<br>
* L 4th Meantone[5] add +2, +5
L 4th Meantone[5] add +2, +5


Sensi is a good example because it's nether heptatonic nor fifth-generated. Below is a Sensi[8] MOS and a Sensi[8] MODMOS, each in both heptatonic and octotonic notation. The generator, a heptatonic 3rd or octotonic 4th, is chroma-negative. In 19edo, generator = 7\19, L = 3\19, and s = 2\19.
Sensi is a good example because it's nether heptatonic nor fifth-generated. Below is a Sensi[8] MOS and a Sensi[8] MODMOS, each in both heptatonic and octotonic notation. The generator, a heptatonic 3rd or octotonic 4th, is chroma-negative. In 19edo, generator = 7\19, L = 3\19, and s = 2\19.


{| class="wikitable"
{| class="wikitable"
|+ Sensi[8]/Sepgu[8] MOS and MODMOS examples
|-
|-
! | notation
! | notation
! | scale name
! | scale name
!color name
![[Color notation/Temperament Names|color name]]
! | sL pattern
! | Ls pattern
! | example in C
! | 19-edo example in C
! | genchain
! | 19-edo genchain
|-
|-
| | heptatonic
| | heptatonic
| | 5th Sensi[8]
| | 5th Sensi[8]
|5th Sepgu[8]
|5th Sepgu[8]
| | sL sL ssLs
| | sLsL ssLs
| | C Db Eb E# Gb G# A B C
| | C Db Eb E# Gb G# A B C
| | Gb B Eb G# <u>'''C'''</u> E# A Db
| | Gb B Eb G# <u>'''C'''</u> E# A Db
Line 756: Line 789:
| | 5th Sensi[8] +7
| | 5th Sensi[8] +7
|5th Sepgu[8] +7
|5th Sepgu[8] +7
| | sL sL sssL
| | sLsL sssL
| | C Db Eb E# Gb G# A Bb C
| | C Db Eb E# Gb G# A Bb C
| | Gb * Eb G# <u>'''C'''</u> E# A Db * Bb
| | Gb * Eb G# <u>'''C'''</u> E# A Db * Bb
Line 767: Line 800:
| | G# * E# H <u>'''C'''</u> F A D * B
| | G# * E# H <u>'''C'''</u> F A D * B
|}
|}
Heptatonic fifth-based notation:
Heptatonic fifth-based notation:


Line 777: Line 811:
The heptatonic-notated MODMOS has "+7" because B is the 7th letter from C. Likewise octotonic has "+8" because with H, B is the 8th letter.
The heptatonic-notated MODMOS has "+7" because B is the 7th letter from C. Likewise octotonic has "+8" because with H, B is the 8th letter.


=Rationale=
MODMOS scales of split-octave temperaments are named as usual:


{| class="wikitable"
|+ Examples of MODMOS scales of split-octave temperaments
|-
! | scale name
! | [[Color notation/Temperament Names|color name]]
! | Ls pattern
! | example in C
! | 1st genchain
! | 2nd genchain
|-
| | 1st Srutal[2x5]
| | 1st Sagugu[2x5]
| | ssssL-ssssL
| | C vC# D vD# E vF# G vG# A vA# C
| | <u>'''C'''</u> G D A E
| | vF# vC# vG# vD# vA#
|-
|1st Srutal[2x5] b2 b5
|1st Sagugu[2x5] b2 b5
|sLmmL-sLmmL
|C vB# D vD# E vF# F# vG# A vA# C
|<u>'''C'''</u> * D A E * F#
|vF# * vG# vD# vA# * vB#
|-
|1st Srutal[2x5] b2
|1st Sagugu[2x5] b2
|sLmmL-mmmmL
|C vB# D vD# E vF# G vG# A vA# C
|<u>'''C'''</u> G D A E
|vF# * vG# vD# vA# * vB#
|}
== Generalization to temperament-agnostic MOS scales ==
[[:Category:Abstract MOS patterns|Abstract MOS patterns]] like 5L 3s are not specific temperaments in which specific commas vanish. Thus there are no ratios other than the octave 2/1 (or more generally the equave 3/1 or whatever). Genchain mode numbers can be applied to these patterns. For example, 5L 3s has a generator in the 450-480¢ range. The "[8]" is redundant, so we drop it to get
* 1st 5L 3s = LLsLLsLs
* 2nd 5L 3s = LLsLsLLs
* 3rd 5L 3s = LsLLsLLs
* etc.
The modes of the sister MOS 3L 5s are the same, just exchange L and s:
* 1st 3L 5s = ssLssLsL
* 2nd 3L 5s = ssLsLssL
* 3rd 3L 5s = sLssLssL
* etc.
For a MOS pattern with a fifth-sized generator, the fifth is still prioritized over the fourth. Otherwise the generator is the mingen.
== Rationale ==
'''Why not number the modes in the order they occur in the scale?'''
'''Why not number the modes in the order they occur in the scale?'''


Line 791: Line 874:
There are centuries of established thought that the fifth, not the fourth, generates the Pythagorean, meantone and well tempered scales, as these quotes show (emphasis added):
There are centuries of established thought that the fifth, not the fourth, generates the Pythagorean, meantone and well tempered scales, as these quotes show (emphasis added):


"Pythagorean tuning is a tuning of the syntonic temperament in which the generator is the ratio '''3:2''' (i.e., the untempered perfect '''fifth''')." -- [https://en.wikipedia.org/wiki/Pythagorean_tuning]
"Pythagorean tuning is a tuning of the syntonic temperament in which the generator is the ratio ''3:2'' (i.e., the untempered perfect ''fifth'')." [https://en.wikipedia.org/wiki/Pythagorean_tuning]


"The syntonic temperament is a system of musical tuning in which the frequency ratio of each musical interval is a product of powers of an octave and a tempered perfect '''fifth'''." -- [https://en.wikipedia.org/wiki/Syntonic_temperament]
"The syntonic temperament is a system of musical tuning in which the frequency ratio of each musical interval is a product of powers of an octave and a tempered perfect ''fifth''." [https://en.wikipedia.org/wiki/Syntonic_temperament]


"Meantone is constructed the same way as Pythagorean tuning, as a stack of perfect '''fifths'''." -- [https://en.wikipedia.org/wiki/Meantone_temperament]
"Meantone is constructed the same way as Pythagorean tuning, as a stack of perfect ''fifths''." [https://en.wikipedia.org/wiki/Meantone_temperament]


"In this system the perfect '''fifth''' is flattened by one quarter of a syntonic comma." -- [https://en.wikipedia.org/wiki/Quarter-comma_meantone]
"In this system the perfect ''fifth'' is flattened by one quarter of a syntonic comma." [https://en.wikipedia.org/wiki/Quarter-comma_meantone]


"The term "well temperament" or "good temperament" usually means some sort of irregular temperament in which the tempered '''fifths''' are of different sizes." -- [https://en.wikipedia.org/wiki/Well_temperament]
"The term "well temperament" or "good temperament" usually means some sort of irregular temperament in which the tempered ''fifths'' are of different sizes." [https://en.wikipedia.org/wiki/Well_temperament]


"A foolish consistency is the hobgoblin of little minds". To choose 4/3 over 3/2 merely for the sake of consistency would be pointless. Unlike a <u>wise</u> consistency, it wouldn't reduce memorization, because it's well known that the generator is historically 3/2.
"A foolish consistency is the hobgoblin of little minds". To choose 4/3 over 3/2 merely for the sake of consistency would be pointless. Unlike a ''wise'' consistency, it wouldn't reduce memorization, because it's well known that the generator is historically 3/2.


'''Then why not always choose the larger of the two generators?'''
'''Then why not always choose the larger of the two generators?'''
Line 811: Line 894:
See below.
See below.


'''Why not just use UDP notation?'''
'''Why not just use modal UDP notation?'''


One problem with [[Modal_UDP_Notation|UDP]] is that avoiding chroma-negative generators causes the genchain to reverse direction frequently as you lengthen or shorten it, which affects the mode names. If exploring the various MOS's of a temperament, one has to constantly check the genchain direction. In Mode Numbers notation, the direction is unchanging.
One problem with [[modal UDP notation]] is that avoiding chroma-negative generators causes the genchain to reverse direction frequently as you lengthen or shorten it, which affects the mode names. If exploring the various MOS's of a temperament, one has to constantly check the genchain direction. In Mode Numbers notation, the direction is unchanging.


{| class="wikitable"
{| class="wikitable"
|+ Comparison of meantone MOS scales in UDP and Mode Numbers
|-
|-
! | scale
! | scale
Line 863: Line 947:


{| class="wikitable"
{| class="wikitable"
|+ Comparison of various meantone scales in UDP and Mode Numbers
|-
|-
! | scale
! | scale
Line 908: Line 993:
| | C G D A E B F# C# G# D# A#
| | C G D A E B F# C# G# D# A#
|-
|-
| | Meantone[12] if generator &lt; 700¢
| | Meantone[12] if generator < 700¢
| | E# A# D# G# C# F# B E A D G C
| | E# A# D# G# C# F# B E A D G C
| | C G D A E B F# C# G# D# A# E#
| | C G D A E B F# C# G# D# A# E#
|-
|-
| | Meantone[12] if generator &gt; 700¢
| | Meantone[12] if generator > 700¢
| | C G D A E B F# C# G# D# A# E#
| | C G D A E B F# C# G# D# A# E#
| style="text-align:center;" | C G D A E B F# C# G# D# A# E#
| style="text-align:center;" | C G D A E B F# C# G# D# A# E#
Line 923: Line 1,008:
Also, when comparing different MOS's of a temperament, with Mode Numbers notation but not with UDP, the Nth mode of the smaller MOS is always a subset of the Nth mode of the larger MOS. For example, Meantone[5] is generated by 3/2, not 4/3 as with UDP. Because Meantone[5] and Meantone[7] have the same generator, C 2nd Meantone[5] = C D F G A C is a subset of C 2nd Meantone[7] = C D E F G A B C. But using UDP, C Meantone 3|1 = C Eb F G Bb C isn't a subset of C Meantone 5|1 = C D E F G A B C.
Also, when comparing different MOS's of a temperament, with Mode Numbers notation but not with UDP, the Nth mode of the smaller MOS is always a subset of the Nth mode of the larger MOS. For example, Meantone[5] is generated by 3/2, not 4/3 as with UDP. Because Meantone[5] and Meantone[7] have the same generator, C 2nd Meantone[5] = C D F G A C is a subset of C 2nd Meantone[7] = C D E F G A B C. But using UDP, C Meantone 3|1 = C Eb F G Bb C isn't a subset of C Meantone 5|1 = C D E F G A B C.


Furthermore, UDP uses the more mathematical [https://en.wikipedia.org/wiki/Zero-based_numbering zero-based counting] and Mode Numbers notation uses the more intuitive one-based counting. UDP is mathematician-oriented whereas Mode Numbers notation is musician-oriented.
Furthermore, UDP uses the more mathematical [[Wikipedia:Zero-based numbering|zero-based numbering]] and Mode Numbers notation uses the more intuitive one-based counting. UDP is mathematician-oriented whereas Mode Numbers notation is musician-oriented.
 
=Related links=
 
Jake Freivald has his own method of naming modes here:


[[Naming_Rank-2_Scales#Jake Freivald method|http://xenharmonic.wikispaces.com/Naming+Rank-2+Scales#Jake%20Freivald%20method]]
== See also ==
* [[Comparison of mode notation systems]]
* [[Modal UDP notation]]
* [[Jake Freivald's mode numbering system]]


[[Category:Mode]]
[[Category:Rank 2]]
[[Category:Rank 2]]
[[category:naming]]

Latest revision as of 00:49, 20 August 2025

Genchain mode numbering (GMN for short) provides a way to name MOS, MODMOS and even non-MOS rank-2 scales and modes systematically. Like Modal UDP notation, it starts with the convention of using some-temperament-name[some-number] to create a generator-chain, and adds a way to number each mode uniquely. It also applies to abstract MOS patterns like 5L 3s.

This mode notation system was designed by Kite Giedraitis.

MOS scales

MOS scales are formed from a segment of the generator-chain, or genchain. The first note in the genchain is the tonic of the 1st mode, the 2nd note is the tonic of the 2nd mode, etc., somewhat analogous to harmonica positions.

For example, here are all the modes of Meantone[7], using ~3/2 as the generator. On this page, the Ls pattern is divided into two halves, for readability. The first half runs from the tonic to the 5th. and the second half runs from the 5th to the 8ve.

Meantone[7] modes on white keys
old scale name new scale name Ls pattern example on white keys genchain
Lydian 1st Meantone[7] LLLs LLs F G A B C D E F F C G D A E B
Ionian (major) 2nd Meantone[7] LLsL LLs C D E F G A B C F C G D A E B
Mixolydian 3rd Meantone[7] LLsL LsL G A B C D E F G F C G D A E B
Dorian 4th Meantone[7] LsLL LsL D E F G A B C D F C G D A E B
Aeolian (minor) 5th Meantone[7] LsLL sLL A B C D E F G A F C G D A E B
Phrygian 6th Meantone[7] sLLL sLL E F G A B C D E F C G D A E B
Locrian 7th Meantone[7] sLLs LLL B C D E F G A B F C G D A E B

4th Meantone[7] is spoken as "fourth meantone heptatonic", or possibly "fourth meantone seven". If in D, as above, it would be "D fourth meantone heptatonic". The term GMN can also be read as genchain mode number, and can refer to the numbers 1st, 2nd, 3rd etc., as in "Dorian's GMN is 4".

The same seven modes, all with C as the tonic, to illustrate the difference between modes. Adjacent modes differ by only one note. The modes proceed from sharper (Lydian) to flatter (Locrian).

Meantone[7] modes in C
old scale name new scale name Ls pattern example in C ------------------ genchain ---------------
Lydian 1st Meantone[7] LLLs LLs C D E F# G A B C C G D A E B F#
Ionian (major) 2nd Meantone[7] LLsL LLs C D E F G A B C F C G D A E B ----
Mixolydian 3rd Meantone[7] LLsL LsL C D E F G A Bb C Bb F C G D A E -------
Dorian 4th Meantone[7] LsLL LsL C D Eb F G A Bb C -------------- Eb Bb F C G D A
Aeolian (minor) 5th Meantone[7] LsLL sLL C D Eb F G Ab Bb C --------- Ab Eb Bb F C G D
Phrygian 6th Meantone[7] sLLL sLL C Db Eb F G Ab Bb C ---- Db Ab Eb Bb F C G
Locrian 7th Meantone[7] sLLs LLL C Db Eb F Gb Ab Bb C Gb Db Ab Eb Bb F C

The octave inverse of a generator is also a generator. To avoid ambiguity in mode numbers, the smaller of the two generators is chosen. An exception is made for 3/2, which is preferred over 4/3 for historical reasons (see below in § Rationale). Unlike modal UDP notation, the generator isn't always chroma-positive. There are several disadvantages of only using chroma-positive generators. See the critique of UDP in the § Rationale section below.

Pentatonic meantone scales:

Meantone[5] modes
old scale name new scale name Ls pattern example in C --------- genchain -------
major pentatonic 1st Meantone[5] ssL sL C D E G A C C G D A E
2nd Meantone[5] sLs sL C D F G A C F C G D A --
3rd Meantone[5] sLs Ls C D F G Bb C -------- Bb F C G D
minor pentatonic 4th Meantone[5] Lss Ls C Eb F G Bb C ---- Eb Bb F C G
5th Meantone[5] LsL ss C Eb F Ab Bb C Ab Eb Bb F C

12-note Meantone scales. If the fifth were larger than 700¢, which would be the case for Superpyth[12], L and s would be interchanged.

Meantone[12] modes
scale name Ls pattern (assumes
a generator < 700¢)
example in C genchain
1st Meantone[12] sLsLsLL sLsLL C C# D D# E E# F# G G# A A# B C C G D A E B F# C# G# D# A# E#
2nd Meantone[12] sLsLLsL sLsLL C C# D D# E F F# G G# A A# B C F C G D A E B F# C# G# D# A#
3rd Meantone[12] sLsLLsL sLLsL C C# D D# E F F# G G# A Bb B C Bb F C G D A E B F# C# G# D#
4th Meantone[12] sLLsLsL sLLsL C C# D Eb E F F# G G# A Bb B C Eb Bb F C G D A E B F# C# G#
5th Meantone[12] sLLsLsL LsLsL C C# D Eb E F F# G Ab A Bb B C Ab Eb Bb F C G D A E B F# C#
6th Meantone[12] LsLsLsL LsLsL C Db D Eb E F F# G Ab A Bb B C Db Ab Eb Bb F C G D A E B F#
7th Meantone[12] LsLsLLs LsLsL C Db D Eb E F Gb G Ab A Bb B C Gb Db Ab Eb Bb F C G D A E B
etc.

Porcupine aka Triyo has a pergen of (P8, P4/3) and a generator of ~10/9, notated as a vM2 or a ^^m2 using ups and downs notation. The enharmonic unison is v3A1. Because the generator is a 2nd, the genchain resembles the scale.

Porcupine[7]/Triyo[7] modes
scale name color name Ls pattern example in C genchain
1st Porcupine[7] 1st Triyo[7] ssss ssL C vD ^Eb F vG ^Ab Bb C C vD ^Eb F vG ^Ab Bb
2nd Porcupine[7] 2nd Triyo[7] ssss sLs C vD ^Eb F vG ^Ab ^Bb C ^Bb C vD ^Eb F vG ^Ab
3rd Porcupine[7] 3rd Triyo[7] ssss Lss C vD ^Eb F vG vA ^Bb C vA ^Bb C vD ^Eb F vG
4th Porcupine[7] 4th Triyo[7] sssL sss C vD ^Eb F G vA ^Bb C G vA ^Bb C vD ^Eb F
5th Porcupine[7] 5th Triyo[7] ssLs sss C vD ^Eb ^F G vA ^Bb C ^F G vA ^Bb C vD ^Eb
6th Porcupine[7] 6th Triyo[7] sLss sss C vD vE ^F G vA ^Bb C vE ^F G vA ^Bb C vD
7th Porcupine[7] 7th Triyo[7] Lsss sss C D vE ^F G vA ^Bb C D vE ^F G vA ^Bb C

Sensi aka Sepgu has pergen (P8, ccP5/7). The ~9/7 generator is both a ^3d4 and a v4A3, and the enharmonic unison is ^7dd2.

Sensi[8]/Sepgu[8] modes
scale name color name Ls pattern example in C genchain
1st Sensi[8] 1st Sepgu[8] ssLss LsL C ^^Db ^4Ebb ^3Fb vvF# G vA ^Bb C C ^3Fb vA ^^Db vvF# ^Bb ^4Ebb G
2nd Sensi[8] 2nd Sepgu[8] ssLsL ssL C ^^Db ^4Ebb ^3Fb vvF# v3G# vA ^Bb C v3G# C ^3Fb vA ^^Db vvF# ^Bb ^4Ebb
3rd Sensi[8] 3rd Sepgu[8] sLssL ssL C ^^Db ^Eb ^3Fb vvF# v3G# vA ^Bb C ^Eb v3G# C ^3Fb vA ^^Db vvF# ^Bb
4th Sensi[8] 4th Sepgu[8] sLssL sLs C ^^Db ^Eb ^3Fb vvF# v3G# vA vvB C vvB ^Eb v3G# C ^3Fb vA ^^Db vvF#
5th Sensi[8] 5th Sepgu[8] sLsLs sLs C ^^Db ^Eb ^3Fb ^^Gb v3G# vA vvB C ^^Gb vvB ^Eb v3G# C ^3Fb vA ^^Db
6th Sensi[8] 6th Sepgu[8] LssLs sLs C vD ^Eb ^3Fb ^^Gb v3G# vA vvB C vD ^^Gb vvB ^Eb v3G# C ^3Fb vA
7th Sensi[8] 7th Sepgu[8] LssLs Lss C vD ^Eb ^3Fb ^^Gb v3G# v4A# vvB C v4A# vD ^^Gb vvB ^Eb v3G# C ^3Fb
8th Sensi[8] 8th Sepgu[8] LsLss Lss C vD ^Eb F ^^Gb v3G# v4A# vvB C F v4A# vD ^^Gb vvB ^Eb v3G# C

MODMOS scales

MODMOS scales are named as chromatic alterations of a MOS scale, similar to UDP notation. The ascending melodic minor scale is 5th Meantone[7] #6 #7. The "#" symbol means moved N steps forwards on the genchain when the generator is chroma-positive, and N steps backwards when it isn't. This ensures a higher pitch. (Note that Meantone[5] is chroma-negative, more on this below.) However, an exception is made for superflat edos like 16edo when the generator is a 3/2 fifth, because in those edos, G# is actually flat of G. Another exception is when the generator is close to the "tipping point" between chroma-positive and chroma-negative. A good alternative in these and other situations, including non-heptatonic and non-fifth-generated scales, is to use + for forwards in the genchain and - for backwards, as in 5th Meantone[7] +6 +7.

A MODMOS scale can have alternate names. The ascending melodic minor scale could also be called 2nd Meantone[7] b3 (major scale with a minor 3rd), or as 4th Meantone[7] #7 (dorian with a major 7th).

Meantone MODMOS scales, with alternative names in italics and parentheses. Alternatives that have more alterations than the original aren't listed:

Meantone[7] MODMOS scale examples
old scale name new scale name Lms pattern example in A genchain
Harmonic minor 5th Meantone[7] #7 msmm sLs A B C D E F G# A F C * D A E B * * G#
Ascending melodic minor 5th Meantone[7] #6 #7 LsLL LLs A B C D E F# G# A C * D A E B F# * G#
(Major with b3) (2nd Meantone[7] b3) " " "
(Dorian with #7) (4th Meantone[7] #7) " " "
Double harmonic minor 5th Meantone[7] #4 #7 msLs sLs A B C D# E F G# A F C * * A E B * * G# D#
(Lydian with b3 b6) (1st Meantone[7] b3 b6) " " "
Double harmonic major 2nd Meantone[7] b2 b6 sLsm sLs A Bb C# D E F G# A Bb F * * D A E * * C# G#
(Phrygian with #3 #7) (6th Meantone[7] #3 #7) " " "
Hungarian gypsy minor 5th Meantone[7] #4 msLs smm A B C D# E F G A F C G * A E B * * * D#
Phrygian dominant 6th Meantone[7] #3 sLsm smm A Bb C# D E F G A Bb F * G D A E * * C#

As can be seen from the genchains, or from the LMs patterns, the harmonic minor and the phrygian dominant are modes of each other, as are the double harmonic minor and the double harmonic major. Unfortunately the scale names do not indicate this.

The advantage of ambiguous names is that one can choose the mode number. If a piece changes from a MOS scale to a MODMOS scale, one can describe both scales with the same mode number. For example, a piece might change from D dorian to D melodic minor. In this context, melodic minor might better be described as an altered dorian scale.

Unlike MOS scales, adjacent MODMOS modes differ by more than one note. Harmonic minor modes:

  • 1st Meantone[7] #2: C D# E F# G A B C
  • 2nd Meantone[7] #5: C D E F G# A B C
  • 7th Meantone[7] b4 b7: C Db Eb Fb Gb Ab Bbb C (breaks the pattern, 7th mode not 3rd mode)
  • 4th Meantone[7] #4: C D Eb F# G A Bb C
  • 5th Meantone[7] #7: C D Eb F G Ab B C (harmonic minor)
  • 6th Meantone[7] #3: C Db E F G Ab Bb C (phrygian dominant)
  • 7th Meantone[7] #6: C Db Eb F Gb A Bb C

The 3rd scale breaks the pattern to avoid an altered tonic ("3rd Meantone[7] #1"). The Bbb is "b7" not "bb7" because the 7th mode is Locrian, and Bbb is only one semitone flat of the Locrian mode's minor 7th Bb.

Ascending melodic minor modes:

  • 1st Meantone[7] #5: C D E F# G# A B C
  • 7th Meantone[7] b4: C Db Eb Fb Gb Ab Bb C (avoid "2nd Meantone[7] #1")
  • 3rd Meantone[7] #4: C D E F# G A Bb C
  • 4th Meantone[7] #7: C D Eb F G A B C
  • 5th Meantone[7] #3: C D E F G Ab Bb C
  • 6th Meantone[7] #6: C Db Eb F G A Bb C
  • 7th Meantone[7] #2: C D Eb F Gb Ab Bb C

Porcupine[7] aka Triyo[7] MODMOS scales, not including alternative names because they all modify the 3rd or the 5th.

Porcupine[7]/Triyo[7] MODMOS scale examples
scale name color name Lms pattern example in C genchain
4th Porcupine[7] #2 4th Triyo[7] #2 LsmL mmm C D ^Eb F G vA ^Bb C D * * G vA ^Bb C * ^Eb F
4th Porcupine[7] #2 b6 4th Triyo[7] #2 b6 LsmL sLm C D ^Eb F G ^Ab ^Bb C D * * G * ^Bb C * ^Eb F* ^Ab
4th Porcupine[7] b6 4th Triyo[7] b6 mmmL sLm C vD ^Eb F G ^Ab ^Bb C G * ^Bb C vD ^Eb F * ^Ab
4th Porcupine[7] b6 b7 4th Triyo[7] b6 b7 mmmL smL C vD ^Eb F G ^Ab Bb C G * * C vD ^Eb F * ^Ab Bb
5th Porcupine[7] #2 5th Triyo[7] #2 LsLm mmm C D ^Eb ^F G vA ^Bb C D * ^F G vA ^Bb C * ^Eb
6th Porcupine[7] b4 6th Triyo[7] b4 mLsL mmm C vD vE F G vA ^Bb C vE * G vA ^Bb C vD * F
7th Porcupine[7] #6 #7 7th Triyo[7] #6 #7 Lmmm Lms C D vE ^F G A vB C A vB * D vE ^F G * * C
7th Porcupine[7] #7 7th Triyo[7] #7 Lmmm mLs C D vE ^F G vA vB C vB * D vE ^F G vA * C
7th Porcupine[7] b4 #7 7th Triyo[7] b4 #7 LmsL mLs C D vE F G vA vB C vB * D vE * G vA * C * * F
7th Porcupine[7] b4 7th Triyo[7] b4 LmsL mmm C D vE F G vA ^Bb C D vE * G vA ^Bb C * * F

Temperaments with split octaves

If a rank-2 temperament's pergen has a split octave, the temperament has multiple genchains running in parallel. Using ups and downs notation, each genchain has its own height. There is a plain one, an up one, perhaps a down one, etc. In order to be a MOS scale, the parallel genchains must not only be the right length, and without any gaps, but also must line up exactly, so that each note has a neighbor immediately above and/or below. In other words, every column of the lattice generated by the 5th and the up must be complete. The number in the brackets becomes two numbers, and the Ls pattern as written here is grouped by period, using hyphens.

Srutal aka Diaschismatic aka Sagugu has a half-8ve period of ~45/32. All five Srutal[2x5] modes. Every other scale note has a down.

Srutal[2x5]/Sagugu[2x5] modes
scale name color name Ls pattern example in C 1st genchain 2nd genchain
1st Srutal[2x5] 1st Sagugu[2x5] ssssL-ssssL C vC# D vD# E vF# G vG# A vA# C C G D A E vF# vC# vG# vD# vA#
2nd Srutal[2x5] 2nd Sagugu[2x5] sssLs-sssLs C vC# D vD# F vF# G vG# A vB C F C G D A vB vF# vC# vG# vD#
3rd Srutal[2x5] 3rd Sagugu[2x5] ssLss-ssLss C vC# D vE F vF# G vG# Bb vB C Bb F C G D vE vB vF# vC# vG#
4th Srutal[2x5] 4th Sagugu[2x5] sLsss-sLsss C vC# Eb vE F vF# G vA Bb vB C Eb Bb F C G vA vE vB vF# vC#
5th Srutal[2x5] 5th Sagugu[2x5] Lssss-Lssss C vD Eb vE F vF# Ab vA Bb vB C Ab Eb Bb F C vD vA vE vB vF#

Srutal's period is written as a vA4, but could instead be written as an ^d5. The generator is written as a P5. If the period is a fraction of an octave, 3/2 is still preferred over 4/3, even though that makes the generator larger than the period. The generator could instead be written as ~16/15 (3/2 minus a period), because that would still create the same mode numbers and thus the same scale names. The first genchain of 1st Srutal[2x5] would be C vC# D vD# E, just like the first half of the scale.

Augmented aka Trigu has a third-8ve period of ~5/4. The generator is ~3/2, which is equivalent to ~6/5. It could be thought of as ~16/15, but that would reverse the genchain direction and change all the mode numbers. The ~16/15 generator is not used, even though it is smaller, so that the genchain direction matches that of the pergen, which is (P8/3, P5).

Augmented[3x3]/Trigu[3x3] modes
scale name color name Ls pattern example in C 1st chain 2nd chain 3rd chain
1st Augmented[3x3] 1st Trigu[3x3] Lss-Lss-Lss C D ^Eb vE vF# G ^Ab ^Bb vB C C G D vE vB vF# ^Ab ^Eb ^Bb
2nd Augmented[3x3] 2nd Trigu[3x3] sLs-sLs-sLs C ^Db ^Eb vE F G ^Ab vA vB C F C G vA vE vB ^Db ^Ab ^Eb
3rd Augmented[3x3] 3rd Trigu[3x3] ssL-ssL-ssL C ^Db vD vE F ^Gb ^Ab vA Bb C Bb F C vD vA vE ^Gb ^Db ^Ab

Diminished aka Quadgu has pergen (P8/4, P5) and a period of ~6/5. The generator is ~3/2, which is equivalent to ~5/4 or ~25/24. The generator can't be ~10/9, because that would change the mode numbers. The Diminished[4x2] scale has only two modes, because the four genchains have only two notes each. The comma is fifthward, thus the 5th is flattened, and the 32/27 minor 3rd is sharpened. Therefore the 300¢ period is narrower than a m3, and must be a vm3.

Diminished[4x2]/Quadgu[4x2] modes
scale name color name Ls pattern example in C 1st chain 2nd chain 3rd chain 4th chain
1st Diminished[4x2] 1st Quadgu[4x2] sL-sL-sL-sL C ^^C# vEb ^E ^^F# G ^A vBb C C G vEb vBb ^^F# ^^C# ^A ^E
2nd Diminished[4x2] 2nd Quadgu[4x2] Ls-Ls-Ls-Ls C ^D vEb F ^^F# vAb ^A ^^B C F C vAb vEb ^^B ^^F# ^D ^A

Using ~25/24 as the generator yields the same scales and mode numbers. 1st Diminished[4x2] would have genchains C – ^^C#, vEb – ^E, ^^F# – G and ^A – vBb, just like the scale.

Blackwood aka Sawa+ya has a fifth-octave period of 240¢. The generator is a just 5/4 = 386¢. There are only two Blackwood[5x2] modes. Ups and downs indicate the generator, not the period.

Blackwood[5x2]/5edo+ya[5x2]
scale name color name Ls pattern example in C genchains
1st Blackwood[5x2] 1st 5edo+ya[5x2] Ls-Ls-Ls-Ls-Ls C vC# D vE F vF# G vA A vB C C-vE, D-vF#, F-vA, G-vB, A-vC#
2nd Blackwood[5x2] 2nd 5edo+ya[5x2] sL-sL-sL-sL-sL C ^C D ^Eb F ^F G ^Ab A ^Bb C ^Ab-C, ^Bb-D, ^C-F, ^Eb-G, ^F-A

Other rank-2 scales

These are scales that are neither MOS nor MODMOS. Some scales have too many or too few notes. If they have an unbroken genchain, they can be named Meantone[6], Meantone[8], etc. But if there are chromatic alterations, and the genchain has gaps, there's no clear way to number the notes, and no clear way to name the scale. Such a scale must be named as a MOS scale with notes added or removed, using "add" and "no", analogous to chord names. As with MODMOS scales, there is often more than one name for a scale.

Non-MOS/MODMOS Meantone examples
scale genchain name smLX pattern
octotonic: (assumes 3/2 < 700¢)
C D E F F# G A B C F C G D A E B F# C 2nd Meantone[8] LLms mLLm
C D E F F# G A Bb C Bb F C G D A E * F# C 3rd Meantone[7] add #4 LLms mLmL
A B C D D# E F G# A F C * D A E B * * G# D# A 5th Meantone[7] #7 add #4 LmLs mmXm
nonatonic: (X = extra large)
A B C# D D# E F# G G# A G D A E B F# C# G# D# A 3rd Meantone[9] LLmsm Lmsm
A B C D D# E F G G# A F C G D A E B * * G# D# A 5th Meantone[7] add #4, #7 LmLsm mLsm
hexatonic:
F G A C D E F F C G D A E F 1st Meantone[6] mmL mms
G A C D E F# G C G D A E * F# G 2nd Meantone[7] no3 mLm mms
pentatonic:
F G A C E F F C G * A E F 2nd Meantone[7] no4 no6 mmL Xs
" " F 1st Meantone[7] no4 no6 "
A B C E F A F C * * A E B A 5th Meantone[7] no4 no7 msL sL

Even 7-note scales can be non-MOS and non-MODMOS. For example, A C D D# E F G# A. The genchain is F C * D A E * * * G# D#. The name requires alterations, adds and drops: A 5th Meantone[7] #7 no2 add #4.

Another possibility is a scale that would be MOS, but the generator is too sharp or flat. For example, a genchain F C G D A E B of 8\13 fifths makes an out-of-order scale A C B D F E G A. This scale is best named as Meantone[5] with added notes: Which brings us to...

Non-heptatonic scales

As long as we stick to MOS scales, terms like Meantone[5] or Meantone[6] are fine. But when we alter, add or drop notes, we need to define what something like "#5" means in a pentatonic or hexatonic context.

If the scale is written heptatonically using 7 note names, the degree numbers are heptatonic. C D E G A# is written 1st Meantone[5] #6. If the scale were written pentatonically using 5 note names, perhaps J K L M #N, it would be 1st Meantone[5] #5. If discussing scales in the abstract without reference to any note names, one needs to specify which type of numbering is being used.

The scale of 8\13 fifths A C B D F E G A mentioned above can't be notated with fifth-based heptatonic and requires pentatonic notation. Because the pentatonic fifth is chroma-negative, the fifthward side of the genchain is flat and the fourthward side is sharp (assuming a fifth < 720¢). Use "+" for fifthwards and "-" for fourthwards.

Using J K L M N for note names, and arbitrarily centering the genchain on L, we get this genchain:

...5# 3# 1# 4# 2# 5 3 1 4 2 5b 3b 1b 4b 2b bb5...

...-K -N -L -J -M K N L J M +K +N +L +J +M ++K...

and these standard modes:

  • L 1st Meantone[5] = L M +N J +K L
  • L 2nd Meantone[5] = L M N J +K L
  • L 3rd Meantone[5] = L M N J K L
  • L 4th Meantone[5] = L -M N J K L
  • L 5th Meantone[5] = L -M N -J K L

The A C B D F E G A scale becomes L M -M N J +K K L, which has 3 possible names:

  • L 3rd Meantone[5] add -2, +5
  • L 2nd Meantone[5] add -2, -5
  • L 4th Meantone[5] add +2, +5

Sensi is a good example because it's nether heptatonic nor fifth-generated. Below is a Sensi[8] MOS and a Sensi[8] MODMOS, each in both heptatonic and octotonic notation. The generator, a heptatonic 3rd or octotonic 4th, is chroma-negative. In 19edo, generator = 7\19, L = 3\19, and s = 2\19.

Sensi[8]/Sepgu[8] MOS and MODMOS examples
notation scale name color name Ls pattern 19-edo example in C 19-edo genchain
heptatonic 5th Sensi[8] 5th Sepgu[8] sLsL ssLs C Db Eb E# Gb G# A B C Gb B Eb G# C E# A Db
octotonic 5th Sensi[8] 5th Sepgu[8] " C D E# F G# H A B# C G# B# E# H C F A D
heptatonic 5th Sensi[8] +7 5th Sepgu[8] +7 sLsL sssL C Db Eb E# Gb G# A Bb C Gb * Eb G# C E# A Db * Bb
octotonic 5th Sensi[8] +8 5th Sepgu[8] +8 " C D E# F G# H A B C G# * E# H C F A D * B

Heptatonic fifth-based notation:

C - C# - Db - D - D# - Eb - E - E#/Fb - F - F# - Gb - G - G# - Ab - A - A# - Bb - B - B#/Cb - C

Octotonic fourth-based notation:

C - C#/Db - D - D#/Eb - E - E# - Fb - F - F#/Gb - G - G# - Hb - H - H#/Ab - A - A#/Bb - B - B# - Cb -C

The heptatonic-notated MODMOS has "+7" because B is the 7th letter from C. Likewise octotonic has "+8" because with H, B is the 8th letter.

MODMOS scales of split-octave temperaments are named as usual:

Examples of MODMOS scales of split-octave temperaments
scale name color name Ls pattern example in C 1st genchain 2nd genchain
1st Srutal[2x5] 1st Sagugu[2x5] ssssL-ssssL C vC# D vD# E vF# G vG# A vA# C C G D A E vF# vC# vG# vD# vA#
1st Srutal[2x5] b2 b5 1st Sagugu[2x5] b2 b5 sLmmL-sLmmL C vB# D vD# E vF# F# vG# A vA# C C * D A E * F# vF# * vG# vD# vA# * vB#
1st Srutal[2x5] b2 1st Sagugu[2x5] b2 sLmmL-mmmmL C vB# D vD# E vF# G vG# A vA# C C G D A E vF# * vG# vD# vA# * vB#

Generalization to temperament-agnostic MOS scales

Abstract MOS patterns like 5L 3s are not specific temperaments in which specific commas vanish. Thus there are no ratios other than the octave 2/1 (or more generally the equave 3/1 or whatever). Genchain mode numbers can be applied to these patterns. For example, 5L 3s has a generator in the 450-480¢ range. The "[8]" is redundant, so we drop it to get

  • 1st 5L 3s = LLsLLsLs
  • 2nd 5L 3s = LLsLsLLs
  • 3rd 5L 3s = LsLLsLLs
  • etc.

The modes of the sister MOS 3L 5s are the same, just exchange L and s:

  • 1st 3L 5s = ssLssLsL
  • 2nd 3L 5s = ssLsLssL
  • 3rd 3L 5s = sLssLssL
  • etc.

For a MOS pattern with a fifth-sized generator, the fifth is still prioritized over the fourth. Otherwise the generator is the mingen.

Rationale

Why not number the modes in the order they occur in the scale?

Scale-based numbering would order the modes 1st = Ionian, 2nd = Dorian, 3rd = Phrygian, etc.

The advantage of genchain-based numbering is that similar modes are grouped together, and the structure of the temperament is better shown. The modes are ordered in a spectrum, and the 1st and last modes are always the two most extreme. For MOS scales, adjacent modes differ by only one note.

The disadvantage of genchain-based numbering is that the mode numbers are harder to relate to the scale. However this is arguably an advantage, because in the course of learning to relate the mode numbers, one internalizes the genchain.

Why make an exception for 3/2 vs 4/3 as the generator?

There are centuries of established thought that the fifth, not the fourth, generates the Pythagorean, meantone and well tempered scales, as these quotes show (emphasis added):

"Pythagorean tuning is a tuning of the syntonic temperament in which the generator is the ratio 3:2 (i.e., the untempered perfect fifth)." — [1]

"The syntonic temperament is a system of musical tuning in which the frequency ratio of each musical interval is a product of powers of an octave and a tempered perfect fifth." — [2]

"Meantone is constructed the same way as Pythagorean tuning, as a stack of perfect fifths." — [3]

"In this system the perfect fifth is flattened by one quarter of a syntonic comma." — [4]

"The term "well temperament" or "good temperament" usually means some sort of irregular temperament in which the tempered fifths are of different sizes." — [5]

"A foolish consistency is the hobgoblin of little minds". To choose 4/3 over 3/2 merely for the sake of consistency would be pointless. Unlike a wise consistency, it wouldn't reduce memorization, because it's well known that the generator is historically 3/2.

Then why not always choose the larger of the two generators?

Interval arithmetic is easier with smaller intervals. It's easier to add up stacked 2nds than stacked 7ths. Also, when the generator is a 2nd, the genchain is often identical to the scale, simplifying mode numbering. (See Porcupine[7] above.)

Why not always choose the chroma-positive generator?

See below.

Why not just use modal UDP notation?

One problem with modal UDP notation is that avoiding chroma-negative generators causes the genchain to reverse direction frequently as you lengthen or shorten it, which affects the mode names. If exploring the various MOS's of a temperament, one has to constantly check the genchain direction. In Mode Numbers notation, the direction is unchanging.

Comparison of meantone MOS scales in UDP and Mode Numbers
scale UDP generator UDP genchain Mode Numbers generator Mode Numbers genchain
Meantone[5] in 31edo 4/3 E A D G C 3/2 C G D A E
Meantone[7] in 31edo 3/2 C G D A E B F# 3/2 C G D A E B F#
Meantone[12] in 31edo 4/3 E# A# D# G# C# F#

B E A D G C

3/2 C G D A E B F# C# G#

D# A# E#

Meantone[19] in 31edo 3/2 C G D A E B F# C#

G# D# A# E# B#

FxCx Gx Dx Ax Ex

3/2 C G D A E B F# C# G#

D# A# E# B# Fx Cx Gx

Dx Ax Ex

A larger problem is that choosing the chroma-positive generator only applies to MOS and MODMOS scales, and breaks down when the length of the genchain results in a non-MOS scale. Mode Numbers notation can be applied to scales like Meantone[8], which while not a MOS, is certainly musically useful.

Comparison of various meantone scales in UDP and Mode Numbers
scale UDP genchain Mode Numbers genchain
Meantone[2] C G C G
Meantone[3] D G C C G D
Meantone[4] ??? C G D A
Meantone[5] E A D G C C G D A E
Meantone[6] ??? G C D A E B
Meantone[7] C G D A E B F# C G D A E B F#
Meantone[8] ??? C G D A E B F# C#
Meantone[9] ??? C G D A E B F# C# G#
Meantone[10] ??? C G D A E B F# C# G# D#
Meantone[11] ??? C G D A E B F# C# G# D# A#
Meantone[12] if generator < 700¢ E# A# D# G# C# F# B E A D G C C G D A E B F# C# G# D# A# E#
Meantone[12] if generator > 700¢ C G D A E B F# C# G# D# A# E# C G D A E B F# C# G# D# A# E#

An even larger problem is that the notation is overly tuning-dependent. Meantone[12] generated by 701¢ has a different genchain than Meantone[12] generated by 699¢, so slight differences in tempering result in different mode names. One might address this problem by reasonably constraining meantone's fifth to be less than 700¢. Likewise one could constrain Superpyth[12]'s fifth to be more than 700¢. But this approach fails with Dominant meantone, which tempers out both 81/80 and 64/63, and in which the fifth can reasonably be either more or less than 700¢. This makes every single UDP mode of Dominant[12] ambiguous. For example "Dominant 8|3" could mean either "4th Dominant[12]" or "9th Dominant[12]". Something similar happens with Meantone[19]. If the fifth is greater than 694¢ = 11\19, the generator is 3/2, but if less than 694¢, it's 4/3. This makes every UDP mode of Meantone[19] ambiguous. Another example is Dicot[7] or Mohajira[7] when the neutral 3rd generator is greater or less than 2\7 = 343¢. Another example is Semaphore[5]'s generator of ~8/7 or ~7/6 if near 1\5 = 240¢. In general, this ambiguity arises whenever the generator of an N-note MOS ranges from slightly flat of any N-edo interval to slightly sharp of it.

Three other problems with UDP are more issues of taste. The most important piece of information, the number of notes in the scale, is hidden by UDP notation. It must be calculated by adding together the up, down, and period numbers (and the period number is often omitted). For example, to determine that Meantone 5|1 is heptatonic, one must add the 5, the 1 and the omitted 1. If the number of notes is indicated with brackets, e.g. Meantone[7] 5|1, then three numbers are used where only two are needed. And split-octave temperaments, e.g. Srutal[10] 6|2(2), use four numbers where only two are needed.

Also, when comparing different MOS's of a temperament, with Mode Numbers notation but not with UDP, the Nth mode of the smaller MOS is always a subset of the Nth mode of the larger MOS. For example, Meantone[5] is generated by 3/2, not 4/3 as with UDP. Because Meantone[5] and Meantone[7] have the same generator, C 2nd Meantone[5] = C D F G A C is a subset of C 2nd Meantone[7] = C D E F G A B C. But using UDP, C Meantone 3|1 = C Eb F G Bb C isn't a subset of C Meantone 5|1 = C D E F G A B C.

Furthermore, UDP uses the more mathematical zero-based numbering and Mode Numbers notation uses the more intuitive one-based counting. UDP is mathematician-oriented whereas Mode Numbers notation is musician-oriented.

See also