45edf: Difference between revisions
Jump to navigation
Jump to search
Created page with "'''Division of the just perfect fifth into 45 equal parts''' (45EDF) is related to 77 edo, but with the 3/2 rather than the 2/1 being just. The octave is abo..." Tags: Mobile edit Mobile web edit |
m Removing from Category:Edonoi using Cat-a-lot |
||
(8 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
'''[[EDF|Division of the just perfect fifth]] into 45 equal parts''' (45EDF) is related to [[77edo | {{Infobox ET}} | ||
'''[[EDF|Division of the just perfect fifth]] into 45 equal parts''' (45EDF) is related to [[77edo]], but with the [[3/2]] rather than the [[2/1]] being [[just]]. The octave is [[Octave stretch|stretched]] by about 1.123 [[cents]] and the step size is about 15.599 cents. | |||
The [[patent val]] has a generally sharp tendency for [[harmonic]]s up to 16, with the exception for 11. | |||
Lookalikes: [[77edo]], [[122edt]] | Lookalikes: [[77edo]], [[122edt]] | ||
== Harmonics == | |||
{{Harmonics in equal|45|3|2|intervals=prime|columns=9}} | |||
{{Harmonics in equal|45|3|2|intervals=prime|columns=9|start=10|collapsed=1}} | |||
== Intervals == | |||
{| class="wikitable" | |||
|- | |||
! |Degree | |||
! |Cents | |||
Value | |||
! |Approximate Ratios | |||
in the 13-limit | |||
|- | |||
| colspan="2" style="text-align:right;" |0 | |||
| style="text-align:center;" |1/1 | |||
|- | |||
|1 | |||
|15.599 | |||
|81/80, 99/98 | |||
|- | |||
|2 | |||
|31.198 | |||
|64/63, 49/48 | |||
|- | |||
|3 | |||
|46.797 | |||
|33/32, 36/35 | |||
|- | |||
|4 | |||
|62.396 | |||
|28/27, 27/26, 26/25 | |||
|- | |||
|5 | |||
|77.995 | |||
|21/20, 22/21, 25/24 | |||
|- | |||
|6 | |||
|93.594 | |||
|135/128 | |||
|- | |||
|7 | |||
|109.193 | |||
|16/15 | |||
|- | |||
|8 | |||
|124.792 | |||
|15/14, 14/13 | |||
|- | |||
|9 | |||
|140.391 | |||
|13/12 | |||
|- | |||
|10 | |||
|155.99 | |||
|12/11, 11/10 | |||
|- | |||
|11 | |||
|171.589 | |||
|72/65 | |||
|- | |||
|12 | |||
|187.188 | |||
|10/9 | |||
|- | |||
|13 | |||
|202.787 | |||
|9/8 | |||
|- | |||
|14 | |||
|218.386 | |||
|256/225 | |||
|- | |||
|15 | |||
|233.985 | |||
|8/7 | |||
|- | |||
|16 | |||
|249.584 | |||
|15/13 | |||
|- | |||
|17 | |||
|265.183 | |||
|7/6 | |||
|- | |||
|18 | |||
|280.782 | |||
|33/28 | |||
|- | |||
|19 | |||
|296.381 | |||
|32/27, 13/11 | |||
|- | |||
|20 | |||
|311.98 | |||
|6/5 | |||
|- | |||
|21 | |||
|327.579 | |||
|98/81 | |||
|- | |||
|22 | |||
|343.178 | |||
|11/9, 39/32 | |||
|- | |||
|23 | |||
|358.777 | |||
|16/13 | |||
|- | |||
|24 | |||
|374.376 | |||
|56/45, 26/21 | |||
|- | |||
|25 | |||
|389.975 | |||
|5/4 | |||
|- | |||
|26 | |||
|405.574 | |||
|33/26, 81/64 | |||
|- | |||
|27 | |||
|420.173 | |||
|14/11, 32/25 | |||
|- | |||
|28 | |||
|436.772 | |||
|9/7 | |||
|- | |||
|29 | |||
|452.371 | |||
|13/10 | |||
|- | |||
|30 | |||
|467.97 | |||
|21/16 | |||
|- | |||
|31 | |||
|483.569 | |||
|120/91 | |||
|- | |||
|32 | |||
|499.168 | |||
|4/3 | |||
|- | |||
|33 | |||
|514.767 | |||
|27/20 | |||
|- | |||
|34 | |||
|530.366 | |||
|49/36 | |||
|- | |||
|35 | |||
|545.965 | |||
|11/8, 15/11 | |||
|- | |||
|36 | |||
|561.564 | |||
|18/13 | |||
|- | |||
|37 | |||
|577.163 | |||
|7/5 | |||
|- | |||
|38 | |||
|592.762 | |||
|45/32 | |||
|- | |||
|39 | |||
|608.361 | |||
|64/45 | |||
|- | |||
|40 | |||
|623.96 | |||
|10/7 | |||
|- | |||
|41 | |||
|639.559 | |||
|13/9 | |||
|- | |||
|42 | |||
|655.158 | |||
|16/11, 22/15 | |||
|- | |||
|43 | |||
|670.757 | |||
|72/49 | |||
|- | |||
|44 | |||
|686.356 | |||
|40/27 | |||
|- | |||
|45 | |||
|701.955 | |||
|3/2 | |||
|- | |||
|46 | |||
|717.554 | |||
|91/60 | |||
|- | |||
|47 | |||
|733.153 | |||
|32/21 | |||
|- | |||
|48 | |||
|748.752 | |||
|20/13 | |||
|- | |||
|49 | |||
|764.351 | |||
|14/9 | |||
|- | |||
|50 | |||
|779.95 | |||
|11/7, 25/16 | |||
|- | |||
|51 | |||
|795.549 | |||
|52/33, 128/81 | |||
|- | |||
|52 | |||
|818.148 | |||
|8/5 | |||
|- | |||
|53 | |||
|826.747 | |||
|45/28, 21/13 | |||
|- | |||
|54 | |||
|842.346 | |||
|13/8 | |||
|- | |||
|55 | |||
|857.945 | |||
|18/11, 64/39 | |||
|- | |||
|56 | |||
|873.544 | |||
|81/49 | |||
|- | |||
|57 | |||
|889.143 | |||
|5/3 | |||
|- | |||
|58 | |||
|904.742 | |||
|27/16, 22/13 | |||
|- | |||
|59 | |||
|920.341 | |||
|56/33 | |||
|- | |||
|60 | |||
|935.84 | |||
|12/7 | |||
|- | |||
|61 | |||
|951.539 | |||
|26/15 | |||
|- | |||
|62 | |||
|967.138 | |||
|7/4 | |||
|- | |||
|63 | |||
|982.737 | |||
|225/128 | |||
|- | |||
|64 | |||
|998.336 | |||
|16/9 | |||
|- | |||
|65 | |||
|1013.935 | |||
|9/5 | |||
|- | |||
|66 | |||
|1029.534 | |||
|65/36 | |||
|- | |||
|67 | |||
|1045.133 | |||
|11/6, 20/11 | |||
|- | |||
|68 | |||
|1060.732 | |||
|24/13 | |||
|- | |||
|69 | |||
|1076.331 | |||
|28/15 | |||
|- | |||
|70 | |||
|1091.93 | |||
|15/8 | |||
|- | |||
|71 | |||
|1107.529 | |||
|256/135 | |||
|- | |||
|72 | |||
|1123.128 | |||
|40/21, 48/25 | |||
|- | |||
|73 | |||
|1138.727 | |||
|27/14, 25/13 | |||
|- | |||
|74 | |||
|1154.326 | |||
|64/33, 35/18 | |||
|- | |||
|75 | |||
|1169.925 | |||
|63/32, 96/49 | |||
|- | |||
|76 | |||
|1185.524 | |||
|160/81, 196/99 | |||
|- | |||
|77 | |||
|1201.123 | |||
|/1 | |||
|- | |||
|78 | |||
|1216.722 | |||
|81/40, 99/49 | |||
|- | |||
|79 | |||
|1232.321 | |||
|128/63, 49/24 | |||
|- | |||
|80 | |||
|1247.92 | |||
|33/16, 72/35 | |||
|- | |||
|81 | |||
|1263.519 | |||
|56/27, 27/13, 52/25 | |||
|- | |||
|82 | |||
|1279.118 | |||
|21/10, 44/21,25/12 | |||
|- | |||
|83 | |||
|1294.717 | |||
|135/64 | |||
|- | |||
|84 | |||
|1310.316 | |||
|32/15 | |||
|- | |||
|85 | |||
|1325.915 | |||
|15/7, 28/13 | |||
|- | |||
|86 | |||
|1341.514 | |||
|13/6 | |||
|- | |||
|87 | |||
|1357.113 | |||
|24/11, 11/5 | |||
|- | |||
|88 | |||
|1372.712 | |||
|144/65 | |||
|- | |||
|89 | |||
|1388.311 | |||
|20/9 | |||
|- | |||
|90 | |||
|1403.91 | |||
|9/4 | |||
|} | |||
{{todo|expand}} |
Latest revision as of 19:23, 1 August 2025
← 44edf | 45edf | 46edf → |
Division of the just perfect fifth into 45 equal parts (45EDF) is related to 77edo, but with the 3/2 rather than the 2/1 being just. The octave is stretched by about 1.123 cents and the step size is about 15.599 cents.
The patent val has a generally sharp tendency for harmonics up to 16, with the exception for 11.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.12 | +1.12 | +5.91 | +0.56 | -1.98 | +5.19 | -6.87 | +3.36 | +0.18 |
Relative (%) | +7.2 | +7.2 | +37.9 | +3.6 | -12.7 | +33.3 | -44.0 | +21.5 | +1.1 | |
Steps (reduced) |
77 (32) |
122 (32) |
179 (44) |
216 (36) |
266 (41) |
285 (15) |
314 (44) |
327 (12) |
348 (33) |
Harmonic | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.45 | -1.82 | +3.85 | -2.27 | -6.73 | -4.73 | +5.65 | +7.18 | -3.74 |
Relative (%) | +28.5 | -11.6 | +24.7 | -14.6 | -43.2 | -30.3 | +36.2 | +46.0 | -24.0 | |
Steps (reduced) |
374 (14) |
381 (21) |
401 (41) |
412 (7) |
417 (12) |
427 (22) |
441 (36) |
453 (3) |
456 (6) |
Intervals
Degree | Cents
Value |
Approximate Ratios
in the 13-limit |
---|---|---|
0 | 1/1 | |
1 | 15.599 | 81/80, 99/98 |
2 | 31.198 | 64/63, 49/48 |
3 | 46.797 | 33/32, 36/35 |
4 | 62.396 | 28/27, 27/26, 26/25 |
5 | 77.995 | 21/20, 22/21, 25/24 |
6 | 93.594 | 135/128 |
7 | 109.193 | 16/15 |
8 | 124.792 | 15/14, 14/13 |
9 | 140.391 | 13/12 |
10 | 155.99 | 12/11, 11/10 |
11 | 171.589 | 72/65 |
12 | 187.188 | 10/9 |
13 | 202.787 | 9/8 |
14 | 218.386 | 256/225 |
15 | 233.985 | 8/7 |
16 | 249.584 | 15/13 |
17 | 265.183 | 7/6 |
18 | 280.782 | 33/28 |
19 | 296.381 | 32/27, 13/11 |
20 | 311.98 | 6/5 |
21 | 327.579 | 98/81 |
22 | 343.178 | 11/9, 39/32 |
23 | 358.777 | 16/13 |
24 | 374.376 | 56/45, 26/21 |
25 | 389.975 | 5/4 |
26 | 405.574 | 33/26, 81/64 |
27 | 420.173 | 14/11, 32/25 |
28 | 436.772 | 9/7 |
29 | 452.371 | 13/10 |
30 | 467.97 | 21/16 |
31 | 483.569 | 120/91 |
32 | 499.168 | 4/3 |
33 | 514.767 | 27/20 |
34 | 530.366 | 49/36 |
35 | 545.965 | 11/8, 15/11 |
36 | 561.564 | 18/13 |
37 | 577.163 | 7/5 |
38 | 592.762 | 45/32 |
39 | 608.361 | 64/45 |
40 | 623.96 | 10/7 |
41 | 639.559 | 13/9 |
42 | 655.158 | 16/11, 22/15 |
43 | 670.757 | 72/49 |
44 | 686.356 | 40/27 |
45 | 701.955 | 3/2 |
46 | 717.554 | 91/60 |
47 | 733.153 | 32/21 |
48 | 748.752 | 20/13 |
49 | 764.351 | 14/9 |
50 | 779.95 | 11/7, 25/16 |
51 | 795.549 | 52/33, 128/81 |
52 | 818.148 | 8/5 |
53 | 826.747 | 45/28, 21/13 |
54 | 842.346 | 13/8 |
55 | 857.945 | 18/11, 64/39 |
56 | 873.544 | 81/49 |
57 | 889.143 | 5/3 |
58 | 904.742 | 27/16, 22/13 |
59 | 920.341 | 56/33 |
60 | 935.84 | 12/7 |
61 | 951.539 | 26/15 |
62 | 967.138 | 7/4 |
63 | 982.737 | 225/128 |
64 | 998.336 | 16/9 |
65 | 1013.935 | 9/5 |
66 | 1029.534 | 65/36 |
67 | 1045.133 | 11/6, 20/11 |
68 | 1060.732 | 24/13 |
69 | 1076.331 | 28/15 |
70 | 1091.93 | 15/8 |
71 | 1107.529 | 256/135 |
72 | 1123.128 | 40/21, 48/25 |
73 | 1138.727 | 27/14, 25/13 |
74 | 1154.326 | 64/33, 35/18 |
75 | 1169.925 | 63/32, 96/49 |
76 | 1185.524 | 160/81, 196/99 |
77 | 1201.123 | /1 |
78 | 1216.722 | 81/40, 99/49 |
79 | 1232.321 | 128/63, 49/24 |
80 | 1247.92 | 33/16, 72/35 |
81 | 1263.519 | 56/27, 27/13, 52/25 |
82 | 1279.118 | 21/10, 44/21,25/12 |
83 | 1294.717 | 135/64 |
84 | 1310.316 | 32/15 |
85 | 1325.915 | 15/7, 28/13 |
86 | 1341.514 | 13/6 |
87 | 1357.113 | 24/11, 11/5 |
88 | 1372.712 | 144/65 |
89 | 1388.311 | 20/9 |
90 | 1403.91 | 9/4 |