23edf: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>FREEZE No edit summary |
m Removing from Category:Edf using Cat-a-lot |
||
(6 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
'''23EDF''' is the [[EDF|equal division of the just perfect fifth]] into 23 parts of 30.5198 [[cents]] each, corresponding to 39.3188 [[edo]] (similar to every third step of [[118edo]]). | |||
==History== | |||
A proponent of 23edf is [[Petr Pařízek]]. The first to write about 23edf on this wiki was [[Todd Harrop]] in 2015. | |||
==Theory== | |||
23edf is close to [[39edo]] and/or [[62edt]], however, the respective [[octave]] and [[tritave|twelfth]] would need to be nearly 10 cents flat. | |||
Some intervals in table below, selected on the basis of single-use of [[prime]]s (for most cases): | |||
Some intervals in table below, selected on the basis of | |||
single-use of | |||
{| class="wikitable" | {| class="wikitable" | ||
Line 85: | Line 82: | ||
| style="text-align:center;" | 7/2 | | style="text-align:center;" | 7/2 | ||
| style="text-align:center;" | –1.9¢ | | style="text-align:center;" | –1.9¢ | ||
|} | |||
=== Harmonics === | |||
{{Harmonics in equal|23|3|2}} | |||
{{Harmonics in equal|23|3|2|start=12|collapsed=1}} | |||
== Intervals == | |||
{| class="wikitable mw-collapsible" | |||
|+ Intervals of 23edf | |||
|- | |||
!Step number | |||
!Size (cents) | |||
|- | |||
|1 | |||
|30.5198 | |||
|- | |||
|2 | |||
|61.0296 | |||
|- | |||
|3 | |||
|91.55935 | |||
|- | |||
|4 | |||
|122.0791 | |||
|- | |||
|5 | |||
|152.5989 | |||
|- | |||
|6 | |||
|183.1187 | |||
|- | |||
|7 | |||
|213.6385 | |||
|- | |||
|8 | |||
|244.1583 | |||
|- | |||
|9 | |||
|274.678 | |||
|- | |||
|10 | |||
|305.1978 | |||
|- | |||
|11 | |||
|335.7176 | |||
|- | |||
|12 | |||
|366.2374 | |||
|- | |||
|13 | |||
|396.7572 | |||
|- | |||
|14 | |||
|427.277 | |||
|- | |||
|15 | |||
|457.7967 | |||
|- | |||
|16 | |||
|488.3165 | |||
|- | |||
|17 | |||
|518.8363 | |||
|- | |||
|18 | |||
|549.3561 | |||
|- | |||
|19 | |||
|579.8759 | |||
|- | |||
|20 | |||
|610.39565 | |||
|- | |||
|21 | |||
|640.9154 | |||
|- | |||
|22 | |||
|671.4352 | |||
|- | |||
|23 | |||
|701.955 | |||
|- | |||
|24 | |||
|732.4748 | |||
|- | |||
|25 | |||
|762.9946 | |||
|- | |||
|26 | |||
|793.51435 | |||
|- | |||
|27 | |||
|824.0341 | |||
|- | |||
|28 | |||
|854.5539 | |||
|- | |||
|29 | |||
|885.0737 | |||
|- | |- | ||
| | |30 | ||
| | |915.5935 | ||
| | |- | ||
| | |31 | ||
|946.1133 | |||
|- | |||
|32 | |||
|976.633 | |||
|- | |||
|33 | |||
|1007.1529 | |||
|- | |||
|34 | |||
|1037.6726 | |||
|- | |||
|35 | |||
|1068.1924 | |||
|- | |||
|36 | |||
|1098.7122 | |||
|- | |||
|37 | |||
|1129.232 | |||
|- | |||
|38 | |||
|1159.7517 | |||
|- | |||
|39 | |||
|1190.2715 | |||
|- | |||
|40 | |||
|1220.7913 | |||
|- | |||
|41 | |||
|1251.3111 | |||
|- | |||
|42 | |||
|1281.8309 | |||
|- | |||
|43 | |||
|1312.35065 | |||
|- | |||
|44 | |||
|1342.8704 | |||
|- | |||
|45 | |||
|1373.3902 | |||
|- | |||
|46 | |||
|1403.91 | |||
|} | |} | ||
{{todo|inline=1|complete table|text=Add at least one more column, showing what the notes are named, what JI they approximate, or anything else interesting about them individually.}} | |||
{{todo|expand}} | |||
[[Category:nonoctave]] | [[Category:nonoctave]] | ||
Latest revision as of 19:00, 1 August 2025
← 22edf | 23edf | 24edf → |
23EDF is the equal division of the just perfect fifth into 23 parts of 30.5198 cents each, corresponding to 39.3188 edo (similar to every third step of 118edo).
History
A proponent of 23edf is Petr Pařízek. The first to write about 23edf on this wiki was Todd Harrop in 2015.
Theory
23edf is close to 39edo and/or 62edt, however, the respective octave and twelfth would need to be nearly 10 cents flat.
Some intervals in table below, selected on the basis of single-use of primes (for most cases):
Step | Size
(cents) |
Approx.
(JI) ratio |
Error from
ratio (cents) |
19 | 579.9 | 7/5 | –2.6¢ |
23 | 702 | 3/2 | |
24 | 732.5 | 29/19 | +0.4¢ |
29 | 885.1 | 5/3 | +0.7¢ |
31 | 946.1 | 19/11 | –0.1¢ |
35 | 1068 | 13/7 | –3.5¢ |
46 | 1404 | 9/4 | |
48 | 1465 | 7/3 | –1.9¢ |
52 | 1587 | 5/2 | +0.7¢ |
55 | 1679 | 29/11 | +0.3¢ |
58 | 1770 | 25/9 | +1.4¢ |
71 | 2167 | 7/2 | –1.9¢ |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.7 | -9.7 | +11.1 | -9.0 | +11.1 | -11.6 | +1.3 | +11.1 | +11.8 | -0.6 | +1.3 |
Relative (%) | -31.9 | -31.9 | +36.2 | -29.5 | +36.2 | -38.2 | +4.4 | +36.2 | +38.6 | -2.1 | +4.4 | |
Steps (reduced) |
39 (16) |
62 (16) |
79 (10) |
91 (22) |
102 (10) |
110 (18) |
118 (3) |
125 (10) |
131 (16) |
136 (21) |
141 (3) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -15.2 | +9.1 | +11.8 | -8.4 | +8.7 | +1.3 | -0.7 | +2.0 | +9.1 | -10.4 | +4.2 |
Relative (%) | -49.7 | +30.0 | +38.6 | -27.5 | +28.6 | +4.4 | -2.3 | +6.7 | +30.0 | -33.9 | +13.9 | |
Steps (reduced) |
145 (7) |
150 (12) |
154 (16) |
157 (19) |
161 (0) |
164 (3) |
167 (6) |
170 (9) |
173 (12) |
175 (14) |
178 (17) |
Intervals
Step number | Size (cents) |
---|---|
1 | 30.5198 |
2 | 61.0296 |
3 | 91.55935 |
4 | 122.0791 |
5 | 152.5989 |
6 | 183.1187 |
7 | 213.6385 |
8 | 244.1583 |
9 | 274.678 |
10 | 305.1978 |
11 | 335.7176 |
12 | 366.2374 |
13 | 396.7572 |
14 | 427.277 |
15 | 457.7967 |
16 | 488.3165 |
17 | 518.8363 |
18 | 549.3561 |
19 | 579.8759 |
20 | 610.39565 |
21 | 640.9154 |
22 | 671.4352 |
23 | 701.955 |
24 | 732.4748 |
25 | 762.9946 |
26 | 793.51435 |
27 | 824.0341 |
28 | 854.5539 |
29 | 885.0737 |
30 | 915.5935 |
31 | 946.1133 |
32 | 976.633 |
33 | 1007.1529 |
34 | 1037.6726 |
35 | 1068.1924 |
36 | 1098.7122 |
37 | 1129.232 |
38 | 1159.7517 |
39 | 1190.2715 |
40 | 1220.7913 |
41 | 1251.3111 |
42 | 1281.8309 |
43 | 1312.35065 |
44 | 1342.8704 |
45 | 1373.3902 |
46 | 1403.91 |