29edt: Difference between revisions
Jump to navigation
Jump to search
m {{todo|expand}} |
m Removing from Category:Edt using Cat-a-lot |
||
Line 208: | Line 208: | ||
}} | }} | ||
[[Category:Edonoi]] | [[Category:Edonoi]] | ||
{{todo|expand}} | {{todo|expand}} |
Revision as of 15:31, 31 July 2025
← 28edt | 29edt | 30edt → |
29EDT is the equal division of the third harmonic into 29 parts of 65.5847 cents each, corresponding to 18.2970 edo. It is related to the luminal temperament.
While not possessing good approximations to most integer harmonics, it does have a few very good rational intervals: notably 27/26, 17/10, 45/32, and 11/6.
Intervals
steps | cents | hekts | corresponding JI intervals |
comments |
---|---|---|---|---|
0 | 1/1 | |||
1 | 65.5847 | 44.8276 | 27/26 | |
2 | 131.1693 | 89.6552 | 14/13, 27/25, 55/51 | |
3 | 196.7540 | 134.4828 | 9/8, 28/25 | pseudo-10/9 |
4 | 262.3386 | 179.3103 | 7/6 | |
5 | 327.9233 | 224.1379 | pseudo-6/5 | |
6 | 393.5079 | 268.9655 | 64/51 | pseudo-5/4 |
7 | 459.0926 | 313.7931 | 13/10 | |
8 | 524.6772 | 358.6206 | 65/48, 27/20 | |
9 | 590.2619 | 403.4483 | 45/32 | |
10 | 655.8466 | 448.2759 | 16/11 | |
11 | 721.4312 | 493.1034 | pseudo-3/2 | |
12 | 787.0159 | 537.9310 | 63/40, 52/33 | pseudo-8/5 |
13 | 852.6005 | 582.7586 | 18/11 | flat pseudo-5/3 |
14 | 918.1852 | 627.5862 | 17/10 | sharp pseudo-5/3 |
15 | 983.7698 | 672.4138 | 30/17 | flat pseudo-9/5 |
16 | 1049.3545 | 717.2414 | 11/6 | sharp pseudo-9/5 |
17 | 1114.9391 | 772.0690 | 99/52, 40/21 | pseudo-15/8 |
18 | 1180.5238 | 806.8966 | pseudooctave | |
19 | 1246.1084 | 851.7241 | 33/16 | |
20 | 1311.6931 | 896.5517 | 32/15 | |
21 | 1377.2778 | 941.3794 | 144/65, 20/9 | |
22 | 1442.8624 | 986.2069 | 30/13 | pseudo-7/3 (7/6 plus pseudooctave) |
23 | 1508.4471 | 1031.0345 | 153/64 | pseudo-12/5 |
24 | 1574.0317 | 1075.8621 | pseudo-5/2 | |
25 | 1639.6164 | 1120.6897 | 18/7 | |
26 | 1705.2010 | 1165.5172 | 8/3, 75/28 | pseudo-27/10 |
27 | 1770.7857 | 1210.3448 | 39/14, 25/9, 153/55 | |
28 | 1836.3703 | 1255.1724 | 26/9 | |
29 | 1901.9550 | 1300.0000 | 3/1 | just perfect fifth plus an octave |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -19.5 | +0.0 | +26.6 | -31.8 | -19.5 | -24.0 | +7.2 | +0.0 | +14.4 | -19.5 | +26.6 |
Relative (%) | -29.7 | +0.0 | +40.6 | -48.4 | -29.7 | -36.6 | +10.9 | +0.0 | +21.9 | -29.7 | +40.6 | |
Steps (reduced) |
18 (18) |
29 (0) |
37 (8) |
42 (13) |
47 (18) |
51 (22) |
55 (26) |
58 (0) |
61 (3) |
63 (5) |
66 (8) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +19.2 | +22.1 | -31.8 | -12.3 | +13.9 | -19.5 | +18.1 | -5.1 | -24.0 | +26.6 | +15.3 |
Relative (%) | +29.3 | +33.7 | -48.4 | -18.8 | +21.2 | -29.7 | +27.6 | -7.8 | -36.6 | +40.6 | +23.3 | |
Steps (reduced) |
68 (10) |
70 (12) |
71 (13) |
73 (15) |
75 (17) |
76 (18) |
78 (20) |
79 (21) |
80 (22) |
82 (24) |
83 (25) |