Opossum: Difference between revisions
Jump to navigation
Jump to search
m - parent category |
+ interval chain |
||
Line 3: | Line 3: | ||
See [[Porcupine family #Opossum]] for technical data. | See [[Porcupine family #Opossum]] for technical data. | ||
== Tuning spectrum == | == Interval chain == | ||
In the following table, odd harmonics 1–11 and their inverses are in '''bold'''. | |||
{| class="wikitable center-1 right-2" | |||
|- | |||
! # | |||
! Cents* | |||
! Approximate ratios* | |||
|- | |||
| 0 | |||
| 0.0 | |||
| '''1/1''' | |||
|- | |||
| 1 | |||
| 161.4 | |||
| 10/9, 11/10, 12/11, 15/14 | |||
|- | |||
| 2 | |||
| 322.7 | |||
| 6/5, 11/9 | |||
|- | |||
| 3 | |||
| 484.1 | |||
| '''4/3''', 9/7 | |||
|- | |||
| 4 | |||
| 645.5 | |||
| 10/7, '''16/11''', 22/15 | |||
|- | |||
| 5 | |||
| 806.8 | |||
| '''8/5''', 11/7 | |||
|- | |||
| 6 | |||
| 968.2 | |||
| 12/7, '''16/9''' | |||
|- | |||
| 7 | |||
| 1129.6 | |||
| 40/21, 48/25, 64/33 | |||
|- | |||
| 8 | |||
| 90.9 | |||
| 16/15, 36/35 | |||
|- | |||
| 9 | |||
| 252.3 | |||
| '''8/7''' | |||
|} | |||
<nowiki/>* In 15edo tuning, octave reduced | |||
== Tunings == | |||
=== Tuning spectrum === | |||
{| class="wikitable center-all left-4" | {| class="wikitable center-all left-4" | ||
|- | |- |
Revision as of 13:15, 6 June 2025
Opossum is an alternative extension to porcupine. It is defined by tempering out 28/27 and 126/125.
See Porcupine family #Opossum for technical data.
Interval chain
In the following table, odd harmonics 1–11 and their inverses are in bold.
# | Cents* | Approximate ratios* |
---|---|---|
0 | 0.0 | 1/1 |
1 | 161.4 | 10/9, 11/10, 12/11, 15/14 |
2 | 322.7 | 6/5, 11/9 |
3 | 484.1 | 4/3, 9/7 |
4 | 645.5 | 10/7, 16/11, 22/15 |
5 | 806.8 | 8/5, 11/7 |
6 | 968.2 | 12/7, 16/9 |
7 | 1129.6 | 40/21, 48/25, 64/33 |
8 | 90.9 | 16/15, 36/35 |
9 | 252.3 | 8/7 |
* In 15edo tuning, octave reduced
Tunings
Tuning spectrum
Edo generator |
Eigenmonzo (unchanged-interval) |
Generator (¢) | Comments |
---|---|---|---|
15/14 | 119.443 | ||
13/12 | 138.573 | ||
13/11 | 144.605 | ||
9/7 | 145.028 | ||
1\8 | 150.000 | ||
12/11 | 150.637 | ||
13/10 | 151.405 | ||
14/13 | 153.100 | ||
7/5 | 154.372 | ||
7/6 | 155.522 | ||
14/11 | 156.498 | ||
3\23 | 156.522 | ||
6/5 | 157.821 | ||
[0 15 6 34 -1 -15⟩ | 158.421 | 13 limit least squares | |
5\38 | 157.895 | ||
7\53 | 158.491 | ||
15/13 | 158.710 | ||
[0 -5 3 19⟩ | 158.732 | 7 limit least squares | |
8/7 | 159.019 | 7, 9, 11, 13 and 15 limit minimax | |
18/13 | 159.154 | ||
[0 32 23 35 -5 -21⟩ | 159.377 | 15 limit least squares | |
[0 3 2 22⟩ | 159.481 | 9 limit least squares | |
1815912315/1476395008 | 159.564 | 11 limit least squares | |
2\15 | 160.000 | ||
11/8 | 162.171 | ||
5/4 | 162.737 | 5 limit minimax | |
262144/234375 | 162.996 | 5 limit least squares | |
16/15 | 163.966 | ||
11/10 | 165.004 | ||
15/11 | 165.762 | ||
4/3 | 166.015 | ||
11/9 | 173.704 | ||
16/13 | 179.736 | ||
10/9 | 182.404 |