321edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 268601160 - Original comment: **
Roeesi (talk | contribs)
Scales: Added a corresponding temperament for the Blastoff scale.
 
(18 intermediate revisions by 8 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{ED intro}}
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-10-25 22:01:08 UTC</tt>.<br>
 
: The original revision id was <tt>268601160</tt>.<br>
== Theory ==
: The revision comment was: <tt></tt><br>
321edo is in[[consistent]] in the [[5-odd-limit]]. The [[patent val]] [[Tempering out|tempers out]] [[2401/2400]], [[5120/5103]] and [[10976/10935]] in the 7-limit, supporting [[hemififths]]. In the 11-limit it tempers out [[385/384]] and 1375/1372, and in the 13-limit [[325/324]], [[352/351]], [[847/845]], [[2080/2079]] and [[4096/4095]], providing the [[optimal patent val]] for 11- and 13-limit [[akea]] temperament.
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
 
<h4>Original Wikitext content:</h4>
=== Prime harmonics ===
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 321 equal division divides the octave into 321 equal parts of 3.738 cents each. The patent val tempers out 2401/2400, 5120/5103 and 10976/10935 in the 7-limit, supporting hemififths temperament. In the 11-limit it tempers out 385/384 and 1375/1372, and in the 13-limit 325/324, 352/351, 847/845 and 2080/2079, providing the [[optimal patent val]] for 11- and 13-limit [[Hemifamity family#Akea|akea temperament]].</pre></div>
{{Harmonics in equal|321}}
<h4>Original HTML content:</h4>
 
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;321edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 321 equal division divides the octave into 321 equal parts of 3.738 cents each. The patent val tempers out 2401/2400, 5120/5103 and 10976/10935 in the 7-limit, supporting hemififths temperament. In the 11-limit it tempers out 385/384 and 1375/1372, and in the 13-limit 325/324, 352/351, 847/845 and 2080/2079,  providing the &lt;a class="wiki_link" href="/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt; for 11- and 13-limit &lt;a class="wiki_link" href="/Hemifamity%20family#Akea"&gt;akea temperament&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>
== Interval table ==
{{main|Table of 321edo intervals}}
 
== Scales ==
[[JUMBLE]]'s Blastoff scale (9L&nbsp;8s)
* 25\321
* 37\321
* 62\321
* 74\321
* 99\321
* 111\321
* 136\321
* 148\321
* 173\321
* 185\321
* 210\321
* 222\321
* 247\321
* 259\321
* 284\321
* 296\321
* 321\321
This scale may be thought of as a tuning of the [[Greenwoodmic temperaments#Secundly|secundly]] (or lower limit secund) temperament.
 
== Music ==
; [[JUMBLE]]
* [https://www.youtube.com/watch?v=4HT5onKQaz0 ''Sun Through The Window''] (2023) – ambient
* [https://www.youtube.com/watch?v=cQoWVBbKnuA ''BLASTOFF!''] (2023) – synthwave, [[9L 8s]] scale
* [https://www.youtube.com/watch?v=e8hhlQSYqVY ''Infinity''] (2023)
* [https://www.youtube.com/watch?v=ZW7JyextZoM ''Greige City''] (2023) – synthwave, [[9L 8s]] scale
* [https://www.youtube.com/watch?v=yIfooPURtYE ''So Long, San Diego''] (2024)
* [https://www.youtube.com/watch?v=xI0HXnrlSlA ''Ten Day Forecast''] (2024) – ambient
 
; [[No Clue Music]]
* [https://www.youtube.com/watch?v=orjW0qIveqU ''Frozen Star''] (2024)
 
[[Category:Akea]]
[[Category:Listen]]

Latest revision as of 10:46, 23 May 2025

← 320edo 321edo 322edo →
Prime factorization 3 × 107
Step size 3.73832 ¢ 
Fifth 188\321 (702.804 ¢)
Semitones (A1:m2) 32:23 (119.6 ¢ : 85.98 ¢)
Consistency limit 3
Distinct consistency limit 3

321 equal divisions of the octave (abbreviated 321edo or 321ed2), also called 321-tone equal temperament (321tet) or 321 equal temperament (321et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 321 equal parts of about 3.74 ¢ each. Each step represents a frequency ratio of 21/321, or the 321st root of 2.

Theory

321edo is inconsistent in the 5-odd-limit. The patent val tempers out 2401/2400, 5120/5103 and 10976/10935 in the 7-limit, supporting hemififths. In the 11-limit it tempers out 385/384 and 1375/1372, and in the 13-limit 325/324, 352/351, 847/845, 2080/2079 and 4096/4095, providing the optimal patent val for 11- and 13-limit akea temperament.

Prime harmonics

Approximation of prime harmonics in 321edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.85 -1.27 -0.60 -1.79 +0.59 -0.28 +1.55 -0.24 -1.54 -1.11
Relative (%) +0.0 +22.7 -33.9 -16.1 -47.8 +15.9 -7.6 +41.5 -6.3 -41.2 -29.7
Steps
(reduced)
321
(0)
509
(188)
745
(103)
901
(259)
1110
(147)
1188
(225)
1312
(28)
1364
(80)
1452
(168)
1559
(275)
1590
(306)

Interval table

Scales

JUMBLE's Blastoff scale (9L 8s)

  • 25\321
  • 37\321
  • 62\321
  • 74\321
  • 99\321
  • 111\321
  • 136\321
  • 148\321
  • 173\321
  • 185\321
  • 210\321
  • 222\321
  • 247\321
  • 259\321
  • 284\321
  • 296\321
  • 321\321

This scale may be thought of as a tuning of the secundly (or lower limit secund) temperament.

Music

JUMBLE
No Clue Music