436edo: Difference between revisions
mNo edit summary |
m Text replacement - "[[Helmholtz temperament|" to "[[Helmholtz (temperament)|" Tags: Mobile edit Mobile web edit |
||
(9 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{ | {{Infobox ET}} | ||
{{ED intro}} | |||
== Theory == | == Theory == | ||
The [[patent val]] of 436edo has a distinct flat tendency, in the sense that if the [[octave]] is pure, | 436edo is [[consistent]] to the [[23-odd-limit]]. The [[patent val]] of 436edo has a distinct flat tendency, in the sense that if the [[octave]] is pure, [[harmonic]]s from 3 to 37 are all flat. | ||
436edo is accurate for some intervals including [[3/2]], [[7/4]], [[11/10]], [[13/10]], [[18/17]], and [[19/18]], so it is especially suitable for the 2.3.7.11/5.13/5.17.19 subgroup. | It [[tempering out|tempers out]] [[32805/32768]] and {{monzo| 1 -68 46 }} in the 5-limit; [[390625/388962]], 420175/419904, and [[2100875/2097152]] in the 7-limit; 1375/1372, [[6250/6237]], [[41503/41472]], and 322102/321489 in the 11-limit; [[625/624]], [[1716/1715]], [[2080/2079]], [[10648/10647]], and 15379/15360 in the 13-limit; [[715/714]], [[1089/1088]], [[1225/1224]], [[1275/1274]], [[2025/2023]], and 11271/11264 in the 17-limit; 1331/1330, [[1445/1444]], [[1521/1520]], 1540/1539, [[1729/1728]], 4394/4389, and 4875/4864 in the 19-limit; 875/874, 897/896, 1105/1104, 1863/1862, 2024/2023, 2185/2184, 2300/2299, and 2530/2527 in the 23-limit. It [[support]]s and gives a good tuning to [[quadrant]]. It also supports [[tsaharuk]], but [[171edo]] is better suited for that purpose. | ||
436edo is accurate for some intervals including [[3/2]], [[7/4]], [[11/10]], [[13/10]], [[18/17]], and [[19/18]], so it is especially suitable for the 2.3.7.11/5.13/5.17.19 [[subgroup]]. | |||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|436}} | {{Harmonics in equal|436}} | ||
=== Subsets and supersets === | |||
Since 436 factors into {{factorization|436}}, 436edo has subset edos {{EDOs| 2, 4, 109, and 218 }}. | |||
[[1308edo]], which divides its edostep into three, is a [[zeta gap edo]] and is consistent in the 21-odd-limit. | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | |- | ||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve stretch (¢) | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning error | ! colspan="2" | Tuning error | ||
|- | |- | ||
Line 23: | Line 31: | ||
| 2.3 | | 2.3 | ||
| {{monzo| -691 436 }} | | {{monzo| -691 436 }} | ||
| | | {{mapping| 436 691 }} | ||
| +0.0379 | | +0.0379 | ||
| 0.0379 | | 0.0379 | ||
Line 30: | Line 38: | ||
| 2.3.5 | | 2.3.5 | ||
| 32805/32768, {{monzo| 1 -68 46 }} | | 32805/32768, {{monzo| 1 -68 46 }} | ||
| | | {{mapping| 436 691 1012 }} | ||
| +0.1678 | | +0.1678 | ||
| 0.1863 | | 0.1863 | ||
Line 37: | Line 45: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 32805/32768, 390625/388962, 420175/419904 | | 32805/32768, 390625/388962, 420175/419904 | ||
| | | {{mapping| 436 691 1012 1224 }} | ||
| +0.1275 | | +0.1275 | ||
| 0.1758 | | 0.1758 | ||
Line 44: | Line 52: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 1375/1372, 6250/6237, 32805/32768, 41503/41472 | | 1375/1372, 6250/6237, 32805/32768, 41503/41472 | ||
| | | {{mapping| 436 691 1012 1224 1508 }} | ||
| +0.1517 | | +0.1517 | ||
| 0.1645 | | 0.1645 | ||
Line 51: | Line 59: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 625/624, 1375/1372, 2080/2079, 10648/10647, 15379/15360 | | 625/624, 1375/1372, 2080/2079, 10648/10647, 15379/15360 | ||
| | | {{mapping| 436 691 1012 1224 1508 1613 }} | ||
| +0.1749 | | +0.1749 | ||
| 0.1589 | | 0.1589 | ||
Line 58: | Line 66: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 625/624, 715/714, 1089/1088, 1225/1224, 2431/2430, 10648/10647 | | 625/624, 715/714, 1089/1088, 1225/1224, 2431/2430, 10648/10647 | ||
| | | {{mapping| 436 691 1012 1224 1508 1613 1782 }} | ||
| +0.1628 | | +0.1628 | ||
| 0.1501 | | 0.1501 | ||
Line 65: | Line 73: | ||
| 2.3.5.7.11.13.17.19 | | 2.3.5.7.11.13.17.19 | ||
| 625/624, 715/714, 1089/1088, 1225/1224, 1331/1330, 1445/1444, 1729/1728 | | 625/624, 715/714, 1089/1088, 1225/1224, 1331/1330, 1445/1444, 1729/1728 | ||
| | | {{mapping| 436 691 1012 1224 1508 1613 1782 1852 }} | ||
| +0.1503 | | +0.1503 | ||
| 0.1443 | | 0.1443 | ||
Line 73: | Line 81: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per | |- | ||
! Generator | ! Periods<br />per 8ve | ||
! Cents | ! Generator* | ||
! Associated<br>ratio | ! Cents* | ||
! Associated<br />ratio* | |||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 90: | Line 99: | ||
| 498.17 | | 498.17 | ||
| 4/3 | | 4/3 | ||
| [[Helmholtz]] | | [[Helmholtz (temperament)|Helmholtz]] | ||
|- | |- | ||
| 4 | | 4 | ||
Line 98: | Line 107: | ||
| [[Quadrant]] | | [[Quadrant]] | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
[[ |
Latest revision as of 02:29, 17 April 2025
← 435edo | 436edo | 437edo → |
436 equal divisions of the octave (abbreviated 436edo or 436ed2), also called 436-tone equal temperament (436tet) or 436 equal temperament (436et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 436 equal parts of about 2.75 ¢ each. Each step represents a frequency ratio of 21/436, or the 436th root of 2.
Theory
436edo is consistent to the 23-odd-limit. The patent val of 436edo has a distinct flat tendency, in the sense that if the octave is pure, harmonics from 3 to 37 are all flat.
It tempers out 32805/32768 and [1 -68 46⟩ in the 5-limit; 390625/388962, 420175/419904, and 2100875/2097152 in the 7-limit; 1375/1372, 6250/6237, 41503/41472, and 322102/321489 in the 11-limit; 625/624, 1716/1715, 2080/2079, 10648/10647, and 15379/15360 in the 13-limit; 715/714, 1089/1088, 1225/1224, 1275/1274, 2025/2023, and 11271/11264 in the 17-limit; 1331/1330, 1445/1444, 1521/1520, 1540/1539, 1729/1728, 4394/4389, and 4875/4864 in the 19-limit; 875/874, 897/896, 1105/1104, 1863/1862, 2024/2023, 2185/2184, 2300/2299, and 2530/2527 in the 23-limit. It supports and gives a good tuning to quadrant. It also supports tsaharuk, but 171edo is better suited for that purpose.
436edo is accurate for some intervals including 3/2, 7/4, 11/10, 13/10, 18/17, and 19/18, so it is especially suitable for the 2.3.7.11/5.13/5.17.19 subgroup.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.12 | -0.99 | -0.02 | -0.86 | -1.08 | -0.37 | -0.27 | -0.75 | -0.22 | -0.08 |
Relative (%) | +0.0 | -4.4 | -36.1 | -0.7 | -31.2 | -39.2 | -13.4 | -9.6 | -27.3 | -8.0 | -3.0 | |
Steps (reduced) |
436 (0) |
691 (255) |
1012 (140) |
1224 (352) |
1508 (200) |
1613 (305) |
1782 (38) |
1852 (108) |
1972 (228) |
2118 (374) |
2160 (416) |
Subsets and supersets
Since 436 factors into 22 × 109, 436edo has subset edos 2, 4, 109, and 218.
1308edo, which divides its edostep into three, is a zeta gap edo and is consistent in the 21-odd-limit.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-691 436⟩ | [⟨436 691]] | +0.0379 | 0.0379 | 1.38 |
2.3.5 | 32805/32768, [1 -68 46⟩ | [⟨436 691 1012]] | +0.1678 | 0.1863 | 6.77 |
2.3.5.7 | 32805/32768, 390625/388962, 420175/419904 | [⟨436 691 1012 1224]] | +0.1275 | 0.1758 | 6.39 |
2.3.5.7.11 | 1375/1372, 6250/6237, 32805/32768, 41503/41472 | [⟨436 691 1012 1224 1508]] | +0.1517 | 0.1645 | 5.98 |
2.3.5.7.11.13 | 625/624, 1375/1372, 2080/2079, 10648/10647, 15379/15360 | [⟨436 691 1012 1224 1508 1613]] | +0.1749 | 0.1589 | 5.77 |
2.3.5.7.11.13.17 | 625/624, 715/714, 1089/1088, 1225/1224, 2431/2430, 10648/10647 | [⟨436 691 1012 1224 1508 1613 1782]] | +0.1628 | 0.1501 | 5.45 |
2.3.5.7.11.13.17.19 | 625/624, 715/714, 1089/1088, 1225/1224, 1331/1330, 1445/1444, 1729/1728 | [⟨436 691 1012 1224 1508 1613 1782 1852]] | +0.1503 | 0.1443 | 5.24 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 51\436 | 140.37 | 243/224 | Tsaharuk |
1 | 181\436 | 498.17 | 4/3 | Helmholtz |
4 | 181\436 (37\436) |
498.17 (101.83) |
4/3 (35/33) |
Quadrant |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct