1429edo: Difference between revisions
→Music: links to spotify and bandcamp |
m Cleanup and update |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
1429edo has a reasonable approximation of the full 17-limit. It is [[consistent]] to the [[9-odd-limit]] with only [[11/10]] barely missing the line. The 11-limit [[TE tuning|optimal tuning]] of the equal temperament is consistent to the 18-integer-limit; however, the 13- and 17-limit optimal tunings, which have less of octave compression, are not, so one might want to keep the compression tight. | 1429edo has a reasonable approximation of the full [[17-limit]]. It is [[consistent]] to the [[9-odd-limit]] with only [[11/10]] barely missing the line. The 11-limit [[TE tuning|optimal tuning]] of the equal temperament is consistent to the 18-integer-limit; however, the 13- and 17-limit optimal tunings, which have less of octave compression, are not, so one might want to keep the compression tight. | ||
As an equal temperament, it [[tempering out|tempers out]] [[4375/4374]] in the 7-limit; [[131072/130977]], 759375/758912, 1953125/1951488, 2359296/2358125, 2657205/2656192, and 3294225/3294172 in the 11-limit; [[2080/2079]], [[4096/4095]], [[4225/4224]], 78125/78078, and [[123201/123200]] in the 13-limit; [[2500/2499]], [[5832/5831]], [[11016/11011]], and [[12376/12375]] in the 17-limit. It [[support]]s the [[gross]] temperament and provides the [[optimal patent val]] for the 11- and 13-limit [[alphatrillium]] temperament. | |||
=== Prime harmonics === | === Prime harmonics === | ||
Line 15: | Line 15: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br>8ve stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 25: | Line 26: | ||
|- | |- | ||
| 2.3 | | 2.3 | ||
| {{ | | {{Monzo| 2265 -1429 }} | ||
| {{ | | {{Mapping| 1429 2265 }} | ||
| | | −0.0235 | ||
| 0.0234 | | 0.0234 | ||
| 2.80 | | 2.80 | ||
|- | |- | ||
| 2.3.5 | | 2.3.5 | ||
| {{ | | {{Monzo| 39 -29 3 }}, {{monzo| -66 -36 53 }} | ||
| {{ | | {{Mapping| 1429 2265 3318 }} | ||
| | | −0.0114 | ||
| 0.0257 | | 0.0257 | ||
| 3.06 | | 3.06 | ||
Line 40: | Line 41: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 4375/4374, {{monzo| 26 4 -3 -14 }}, {{monzo| 40 -22 -1 -1 }} | | 4375/4374, {{monzo| 26 4 -3 -14 }}, {{monzo| 40 -22 -1 -1 }} | ||
| {{ | | {{Mapping| 1429 2265 3318 4012 }} | ||
| | | −0.0302 | ||
| 0.0395 | | 0.0395 | ||
| 4.70 | | 4.70 | ||
Line 47: | Line 48: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 4375/4374, 131072/130977, 759375/758912, 3294225/3294172 | | 4375/4374, 131072/130977, 759375/758912, 3294225/3294172 | ||
| {{ | | {{Mapping| 1429 2265 3318 4012 4944 }} | ||
| | | −0.0471 | ||
| 0.0488 | | 0.0488 | ||
| 5.81 | | 5.81 | ||
Line 54: | Line 55: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 2080/2079, 4096/4095, 4375/4374, 78125/78078, 3294225/3294172 | | 2080/2079, 4096/4095, 4375/4374, 78125/78078, 3294225/3294172 | ||
| {{ | | {{Mapping| 1429 2265 3318 4012 4944 5288 }} | ||
| | | −0.0420 | ||
| 0.0460 | | 0.0460 | ||
| 5.48 | | 5.48 | ||
Line 61: | Line 62: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 2080/2079, 2500/2499, 4096/4095, 4375/4374, 11016/11011, 108086/108045 | | 2080/2079, 2500/2499, 4096/4095, 4375/4374, 11016/11011, 108086/108045 | ||
| {{ | | {{Mapping| 1429 2265 3318 4012 4944 5288 5841 }} | ||
| | | −0.0364 | ||
| 0.0447 | | 0.0447 | ||
| 5.32 | | 5.32 | ||
Line 69: | Line 70: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
|- | |||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator* | ! Generator* | ||
! Cents* | ! Cents* | ||
! Associated<br> | ! Associated<br>ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 85: | Line 87: | ||
| 674\1429 | | 674\1429 | ||
| 565.990 | | 565.990 | ||
| | | 104/75 | ||
| [[ | | [[Alphatrillium]] | ||
|} | |} | ||
<nowiki>* | <nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | ||
== Scales == | == Scales == | ||
Line 94: | Line 96: | ||
== Music == | == Music == | ||
; [[ | ; [[Francium]] | ||
* "Gross Pattern" from ''Gross temperament EP'' (2023) [https://open.spotify.com/track/1BwMVnnrzfug6pSLUJ0jSG Spotify] | [https://francium223.bandcamp.com/track/gross-pattern Bandcamp] | [https://youtu.be/ttQVdzSy96M | * "Gross Pattern" from ''Gross temperament EP'' (2023) [https://open.spotify.com/track/1BwMVnnrzfug6pSLUJ0jSG Spotify] | [https://francium223.bandcamp.com/track/gross-pattern Bandcamp] | [https://youtu.be/ttQVdzSy96M YouTube] – gross in 1429edo tuning | ||
[[Category:Listen]] |
Latest revision as of 15:16, 16 March 2025
← 1428edo | 1429edo | 1430edo → |
1429 equal divisions of the octave (abbreviated 1429edo or 1429ed2), also called 1429-tone equal temperament (1429tet) or 1429 equal temperament (1429et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1429 equal parts of about 0.84 ¢ each. Each step represents a frequency ratio of 21/1429, or the 1429th root of 2.
Theory
1429edo has a reasonable approximation of the full 17-limit. It is consistent to the 9-odd-limit with only 11/10 barely missing the line. The 11-limit optimal tuning of the equal temperament is consistent to the 18-integer-limit; however, the 13- and 17-limit optimal tunings, which have less of octave compression, are not, so one might want to keep the compression tight.
As an equal temperament, it tempers out 4375/4374 in the 7-limit; 131072/130977, 759375/758912, 1953125/1951488, 2359296/2358125, 2657205/2656192, and 3294225/3294172 in the 11-limit; 2080/2079, 4096/4095, 4225/4224, 78125/78078, and 123201/123200 in the 13-limit; 2500/2499, 5832/5831, 11016/11011, and 12376/12375 in the 17-limit. It supports the gross temperament and provides the optimal patent val for the 11- and 13-limit alphatrillium temperament.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | +0.074 | -0.030 | +0.243 | +0.397 | +0.060 | +0.013 | -0.242 | -0.143 | -0.046 | +0.381 |
Relative (%) | +0.0 | +8.9 | -3.5 | +29.0 | +47.2 | +7.2 | +1.6 | -28.8 | -17.0 | -5.5 | +45.3 | |
Steps (reduced) |
1429 (0) |
2265 (836) |
3318 (460) |
4012 (1154) |
4944 (657) |
5288 (1001) |
5841 (125) |
6070 (354) |
6464 (748) |
6942 (1226) |
7080 (1364) |
Subsets and supersets
1429edo is the 226th prime edo.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [2265 -1429⟩ | [⟨1429 2265]] | −0.0235 | 0.0234 | 2.80 |
2.3.5 | [39 -29 3⟩, [-66 -36 53⟩ | [⟨1429 2265 3318]] | −0.0114 | 0.0257 | 3.06 |
2.3.5.7 | 4375/4374, [26 4 -3 -14⟩, [40 -22 -1 -1⟩ | [⟨1429 2265 3318 4012]] | −0.0302 | 0.0395 | 4.70 |
2.3.5.7.11 | 4375/4374, 131072/130977, 759375/758912, 3294225/3294172 | [⟨1429 2265 3318 4012 4944]] | −0.0471 | 0.0488 | 5.81 |
2.3.5.7.11.13 | 2080/2079, 4096/4095, 4375/4374, 78125/78078, 3294225/3294172 | [⟨1429 2265 3318 4012 4944 5288]] | −0.0420 | 0.0460 | 5.48 |
2.3.5.7.11.13.17 | 2080/2079, 2500/2499, 4096/4095, 4375/4374, 11016/11011, 108086/108045 | [⟨1429 2265 3318 4012 4944 5288 5841]] | −0.0364 | 0.0447 | 5.32 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 109\1429 | 91.533 | [144 -22 -47⟩ | Gross |
1 | 674\1429 | 565.990 | 104/75 | Alphatrillium |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct