1277edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
Created page with "{{Infobox ET}} {{EDO intro|1277}} == Theory == 1277edo is consistent to the 11-odd-limit. The equal temperament tempers out 4375/4374, 52734375/..."
 
Francium (talk | contribs)
m changed EDO intro to ED intro
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|1277}}
{{ED intro}}


== Theory ==
== Theory ==
1277edo is [[consistent]] to the [[11-odd-limit]]. The equal temperament [[tempering out|tempers out]] [[4375/4374]], 52734375/52706752 and {{monzo|51 -13 -1 -10}} in the 7-limit; 4375/4374, 759375/758912, 151263/151250 and 2097152/2096325 in the 11-limit. It [[support]]s [[nanismic]], [[nanic]], [[ragismic]], [[bragi]], [[revopentic]], [[revopent]], [[sasaquinbizo-atriyo]], [[starscape]], [[nommismic]], [[technologismic]], [[supermajor]] and [[monzismic]].
1277edo is [[consistent]] to the [[11-odd-limit]]. The equal temperament [[tempering out|tempers out]] [[4375/4374]], 52734375/52706752, 645700815/645657712 ([[starscape comma]]) and {{monzo| 51 -13 -1 -10 }} ([[technologisma]]) in the 7-limit; 151263/151250, 759375/758912, and 2097152/2096325 in the 11-limit. It [[support]]s [[monzismic]], [[supermajor]], [[revopent]], as well as the rank-3 temperament [[bragi]].


=== Prime harmonics ===
=== Prime harmonics ===
Line 9: Line 9:


=== Subsets and supersets ===
=== Subsets and supersets ===
1277edo is the 206th [[prime EDO]].
1277edo is the 206th [[prime edo]]. [[2554edo]], which divides the edostep in two, is the smallest edo [[distinctly consistent]] through the [[41-odd-limit]], and provides correction for harmonics 11 through 41.


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |[[Subgroup]]
! rowspan="2" |[[Comma list|Comma List]]
! rowspan="2" |[[Mapping]]
! rowspan="2" |Optimal<br>8ve Stretch (¢)
! colspan="2" |Tuning Error
|-
![[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
|-
|-
|2.3
! rowspan="2" | [[Subgroup]]
|{{monzo|2024 -1277}}
! rowspan="2" | [[Comma list]]
|{{mapping|1277 2024}}
! rowspan="2" | [[Mapping]]
| -0.0009
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| 2024 -1277 }}
| {{mapping| 1277 2024 }}
| −0.0009
| 0.0009
| 0.0009
| 0.10
| 0.10
|-
|-
|2.3.5
| 2.3.5
|{{monzo|54 -37 2}}, {{monzo|-67 -9 35}}
| {{monzo| 54 -37 2 }}, {{monzo| -67 -9 35 }}
|{{mapping|1277 2024 2965}}
| {{mapping| 1277 2024 2965 }}
| +0.0132
| +0.0132
| 0.0199
| 0.0199
| 2.12
| 2.12
|-
|-
|2.3.5.7
| 2.3.5.7
|4375/4374, 52734375/52706752, {{monzo|51 -13 -1 -10}}
| 4375/4374, 52734375/52706752, {{monzo| 51 -13 -1 -10 }}
|{{mapping|1277 2024 2965 3585}}
| {{mapping| 1277 2024 2965 3585 }}
| +0.0093
| +0.0093
| 0.0186
| 0.0186
| 1.98
| 1.98
|-
|-
|2.3.5.7.11
| 2.3.5.7.11
|4375/4374, 759375/758912, 151263/151250, 2097152/2096325
| 4375/4374, 151263/151250, 759375/758912, 2097152/2096325
|{{mapping|1277 2024 2965 3585 4418}}
| {{mapping| 1277 2024 2965 3585 4418 }}
| -0.0092
| −0.0092
| 0.0405
| 0.0405
| 4.31
| 4.31
Line 53: Line 54:
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per 8ve
|-
! Periods<br />per 8ve
! Generator*
! Generator*
! Cents*
! Cents*
! Associated<br>Ratio*
! Associated<br />ratio*
! Temperaments
! Temperaments
|-
|-
|1
| 1
|265\1277
| 265\1277
|249.021
| 249.021
|{{monzo|-27 11 3 1}}
| {{monzo| -27 11 3 1 }}
|[[Monzismic]]
| [[Monzismic]]
|-
|-
|1
| 1
|380\1277
| 380\1277
|357.087
| 357.087
|768/625
| 768/625
|[[Dodifo]]
| [[Dodifo]]
|-
|-
|1
| 1
|463\1277
| 463\1277
|435.082
| 435.082
|9/7
| 9/7
|[[Supermajor]]
| [[Supermajor]]
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
== Music ==
; [[Francium]]
* "mututhery" from ''albumwithoutspaces'' (2024) – [https://open.spotify.com/track/6EUbC14BVFJ20b1C4cCOFe Spotify] | [https://francium223.bandcamp.com/track/mututhery Bandcamp] | [https://www.youtube.com/watch?v=0j7yaypCOts YouTube] – in Monzismic[19], 1277edo tuning
* "Makeup Is Soothing." from ''Random Sentences'' (2025) – [https://open.spotify.com/track/6SJHf64ENaPnzQKlnO315x Spotify] | [https://francium223.bandcamp.com/track/makeup-is-soothing Bandcamp] | [https://www.youtube.com/watch?v=zw1oavPPnqU YouTube] – in Aunusic, 1277edo tuning


<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
[[Category:Listen]]

Latest revision as of 18:09, 19 February 2025

← 1276edo 1277edo 1278edo →
Prime factorization 1277 (prime)
Step size 0.939702 ¢ 
Fifth 747\1277 (701.958 ¢)
Semitones (A1:m2) 121:96 (113.7 ¢ : 90.21 ¢)
Consistency limit 11
Distinct consistency limit 11

1277 equal divisions of the octave (abbreviated 1277edo or 1277ed2), also called 1277-tone equal temperament (1277tet) or 1277 equal temperament (1277et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1277 equal parts of about 0.94 ¢ each. Each step represents a frequency ratio of 21/1277, or the 1277th root of 2.

Theory

1277edo is consistent to the 11-odd-limit. The equal temperament tempers out 4375/4374, 52734375/52706752, 645700815/645657712 (starscape comma) and [51 -13 -1 -10 (technologisma) in the 7-limit; 151263/151250, 759375/758912, and 2097152/2096325 in the 11-limit. It supports monzismic, supermajor, revopent, as well as the rank-3 temperament bragi.

Prime harmonics

Approximation of prime harmonics in 1277edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 +0.003 -0.096 +0.007 +0.287 -0.434 +0.291 +0.373 +0.387 +0.337 +0.462
Relative (%) +0.0 +0.3 -10.2 +0.8 +30.6 -46.2 +31.0 +39.7 +41.1 +35.8 +49.1
Steps
(reduced)
1277
(0)
2024
(747)
2965
(411)
3585
(1031)
4418
(587)
4725
(894)
5220
(112)
5425
(317)
5777
(669)
6204
(1096)
6327
(1219)

Subsets and supersets

1277edo is the 206th prime edo. 2554edo, which divides the edostep in two, is the smallest edo distinctly consistent through the 41-odd-limit, and provides correction for harmonics 11 through 41.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [2024 -1277 [1277 2024]] −0.0009 0.0009 0.10
2.3.5 [54 -37 2, [-67 -9 35 [1277 2024 2965]] +0.0132 0.0199 2.12
2.3.5.7 4375/4374, 52734375/52706752, [51 -13 -1 -10 [1277 2024 2965 3585]] +0.0093 0.0186 1.98
2.3.5.7.11 4375/4374, 151263/151250, 759375/758912, 2097152/2096325 [1277 2024 2965 3585 4418]] −0.0092 0.0405 4.31

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 265\1277 249.021 [-27 11 3 1 Monzismic
1 380\1277 357.087 768/625 Dodifo
1 463\1277 435.082 9/7 Supermajor

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct

Music

Francium
  • "mututhery" from albumwithoutspaces (2024) – Spotify | Bandcamp | YouTube – in Monzismic[19], 1277edo tuning
  • "Makeup Is Soothing." from Random Sentences (2025) – Spotify | Bandcamp | YouTube – in Aunusic, 1277edo tuning