List of anomalous saturated suspensions: Difference between revisions
Wikispaces>FREEZE No edit summary |
m Categories |
||
(11 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
Below is a complete list of [ | Below is a complete list of [[anomalous saturated suspension]]s through the [[23-odd-limit]]. Each chord listed is either [[Otonality and utonality|ambitonal]] or has a [[Otonality and utonality|o/utonal]] inverse that is also an anomalous saturated suspension. | ||
==Formal names== | == Formal names == | ||
For each odd limit we can list ambitonal chords in lexicographic order by harmonic series representation, along with o/utonal chord pairs according to the harmonic series representation of the otonal chord in the pair. Each chord is then designated by a capital "A" whose subscript is a tuple, where the first value is its odd limit and the second value is its index in the list for that odd limit. This is followed by an "a," "o," or "u" depending on whether the chord is ambitonal, otonal, or utonal. | |||
Every chord has a plausible [[Chord homonym|homonym]]. The alternate root is bolded in the scale. The Color Names column names the homonym for some of the chords. For example, if the first chord is Cg7, it has as a homonym gEby6. | |||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! Formal name | |||
! Odd limit | |||
! Harmonic series | |||
! Scale | |||
! [[Color name]] | |||
! Common name | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{9,1a}</span> | |||
| 9 | |||
| 3:5:9:15 | |||
| 1/1 '''6/5''' 3/2 9/5 | |||
| | Minor 7th Chord | | g7 = y6 | ||
| Minor 7th Chord | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{9,2a}</span> | |||
| 9 | |||
| 3:7:9:21 | |||
| 1/1 '''7/6''' 3/2 7/4 | |||
| | Septimal Minor 7th Chord | | z7 = r6 | ||
| Septimal Minor 7th Chord | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{11,1a}</span> | |||
| 11 | |||
| 3:9:11:33 | |||
| 1/1 11/8 3/2 '''11/6''' | |||
| | | | 1o7(1o4) = 1u6(1u2) | ||
| | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{13,1a}</span> | |||
| 13 | |||
| 3:9:13:39 | |||
| 1/1 '''13/12''' 3/2 13/8 | |||
| | | | 3o6(3o2) = 3u7(3u4) | ||
| | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{15,1o}</span> | |||
| 15 | |||
| 3:7:9:15:21 | |||
| 1/1 '''7/6''' 5/4 3/2 7/4 | |||
| | Hendrix | | h7,z10 = r6,ry8 | ||
| Hendrix | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{15,1u}</span> | |||
| 15 | |||
| 15:21:35:45:105 | |||
| 1/1 '''7/6''' 7/5 3/2 7/4 | |||
| | Inverted Hendrix | | z7,zg5 = r6,g3 | ||
| Inverted Hendrix | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{15,2o}</span> | |||
| 15 | |||
| 3:9:11:15:33 | |||
| 1/1 5/4 11/8 3/2 '''11/6''' | |||
| | 11-Hendrix | | y,1o7,1o11 = 1u6,1u9(1uy4) | ||
| 11-Hendrix | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{15,2u}</span> | |||
| 15 | |||
| 15:33:45:55:165 | |||
| 1/1 11/10 11/8 3/2 '''11/6''' | |||
| | Inverted 11-Hendrix | | 1o7(1o4)1og9 = g,1u6,1u9 | ||
| Inverted 11-Hendrix | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{15,3o}</span> | |||
| 15 | |||
| 3:9:13:15:39 | |||
| 1/1 '''13/12''' 5/4 3/2 13/8 | |||
| | 13-Hendrix | | y,3o6,3o9 = 3u7(3u4)3uy9 | ||
| 13-Hendrix | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{15,3u}</span> | |||
| 15 | |||
| 15:39:45:65:195 | |||
| 1/1 '''13/12''' 13/10 3/2 13/8 | |||
| | Inverted 13-Hendrix | | 3o6,3o9(3og4) = g,3u7,3u11 | ||
| Inverted 13-Hendrix | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{17,1o}</span> | |||
| 17 | |||
| 3:9:15:17:51 | |||
| 1/1 17/16 5/4 '''17/12''' 3/2 | |||
| | 17-Hendrix | | y,17o9,17o12 | ||
| 17-Hendrix | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{17,1u}</span> | |||
| 17 | |||
| 15:45:51:85:255 | |||
| 1/1 17/16 '''17/12''' 3/2 17/10 | |||
| | Inverted 17-Hendrix | | 17og7(17o2)17o12 | ||
| Inverted 17-Hendrix | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{19,1o}</span> | |||
| 19 | |||
| 3:9:15:19:57 | |||
| 1/1 19/16 5/4 3/2 '''19/12''' | |||
| | 19-Hendrix | | 19o6,y3 = 19u7,19uy5 | ||
| 19-Hendrix | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{19,1u}</span> | |||
| 19 | |||
| 15:45:57:95:285 | |||
| 1/1 19/16 3/2 '''19/12''' 19/10 | |||
| | Inverted 19-Hendrix | | 19o6,19og8 = 19u7,g3 | ||
| Inverted 19-Hendrix | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{21,1o}</span> | |||
| 21 | |||
| 3:5:9:15:21:45 | |||
| 1/1 5/4 3/2 '''5/3''' 7/4 15/8 | |||
| | | | y6,z7,y7 = g9,zg9 | ||
| | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{21,1u}</span> | |||
| 21 | |||
| 7:15:21:35:63:105 | |||
| 1/1 15/14 9/8 '''5/4''' 3/2 15/8 | |||
| | | | y9,ry8 = g7,g6,r6 | ||
| | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{21,2o}</span> | |||
| 21 | |||
| 3:7:9:15:21:63 | |||
| 1/1 '''7/6''' 5/4 21/16 3/2 7/4 | |||
| | | | h7,z10,z11 = r6,ry8,9 | ||
| Hendrix add11? | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{21,2u}</span> | |||
| 21 | |||
| 5:15:21:35:45:105 | |||
| 1/1 21/20 9/8 21/16 '''3/2''' '''7/4''' | |||
| | | | z9(z4)zg9 = z6,4,zg5 = r6,g3,r9 | ||
| blues scale | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{21,3o}</span> | |||
| 21 | |||
| 3:9:11:15:21:33 | |||
| 1/1 5/4 11/8 3/2 7/4 '''11/6''' | |||
| | | | h7,1o7,1o11 | ||
| | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{21,3u}</span> | |||
| 21 | |||
| 105:165:231:315:385:1155 | |||
| 1/1 '''12/11''' 6/5 3/2 18/11 12/7 | |||
| | | | s6,1u6,1u9 | ||
| | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{21,4o}</span> | |||
| 21 | |||
| 3:9:13:15:21:39 | |||
| 1/1 '''13/12''' 5/4 3/2 13/8 7/4 | |||
| | | | h7,3o6,3o9 | ||
| | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{21,4u}</span> | |||
| 21 | |||
| 105:195:273:315:455:1365 | |||
| 1/1 6/5 18/13 3/2 12/7 '''24/13''' | |||
| | | | s6,3u4,3u7 | ||
| | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{21,5o}</span> | |||
| 21 | |||
| 3:9:15:17:21:51 | |||
| 1/1 17/16 5/4 '''17/12''' 3/2 7/4 | |||
| | | | h7,17o9,17o12 | ||
| dom7b9#11 | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{21,5u}</span> | |||
| 21 | |||
| 105:255:315:357:595:1785 | |||
| 1/1 18/17 6/5 '''24/17''' 3/2 12/7 | |||
| | | | s6,17u8,17u11 | ||
| min6b9#11 | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{21,6o}</span> | |||
| 21 | |||
| 3:9:15:19:21:57 | |||
| 1/1 19/16 5/4 3/2 '''19/12''' 7/4 | |||
| | | | 19o6,y3,z7 | ||
| dom7#9b13 | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{21,6u}</span> | |||
| 21 | |||
| 105:285:315:399:665:1995 | |||
| 1/1 6/5 '''24/19''' 3/2 12/7 36/19 | |||
| | | | 19u7,g3,r6 | ||
| maj7#9,13 | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{23,1o}</span> | |||
| 23 | |||
| 3:9:15:21:23:69 | |||
| 1/1 5/4 23/16 3/2 7/4 '''23/12''' | |||
| | | | h7,23o5,23o8 | ||
| | |||
|- | |- | ||
| '''A'''<span style="vertical-align: sub;">{23,1u}</span> | |||
| 23 | |||
| 105:315:345:483:805:2415 | |||
| 1/1 '''24/23''' 6/5 3/2 36/23 12/7 | |||
| | | | s6,23u5,23u8 | ||
| | |||
|} | |} | ||
== External links == | |||
* [http://x31eq.com/ass.htm Graham Breed's list] | |||
[[Category:Lists of chords]] | |||
[[Category:Dyadic chords]] |
Latest revision as of 22:11, 22 December 2024
Below is a complete list of anomalous saturated suspensions through the 23-odd-limit. Each chord listed is either ambitonal or has a o/utonal inverse that is also an anomalous saturated suspension.
Formal names
For each odd limit we can list ambitonal chords in lexicographic order by harmonic series representation, along with o/utonal chord pairs according to the harmonic series representation of the otonal chord in the pair. Each chord is then designated by a capital "A" whose subscript is a tuple, where the first value is its odd limit and the second value is its index in the list for that odd limit. This is followed by an "a," "o," or "u" depending on whether the chord is ambitonal, otonal, or utonal.
Every chord has a plausible homonym. The alternate root is bolded in the scale. The Color Names column names the homonym for some of the chords. For example, if the first chord is Cg7, it has as a homonym gEby6.
Formal name | Odd limit | Harmonic series | Scale | Color name | Common name |
---|---|---|---|---|---|
A{9,1a} | 9 | 3:5:9:15 | 1/1 6/5 3/2 9/5 | g7 = y6 | Minor 7th Chord |
A{9,2a} | 9 | 3:7:9:21 | 1/1 7/6 3/2 7/4 | z7 = r6 | Septimal Minor 7th Chord |
A{11,1a} | 11 | 3:9:11:33 | 1/1 11/8 3/2 11/6 | 1o7(1o4) = 1u6(1u2) | |
A{13,1a} | 13 | 3:9:13:39 | 1/1 13/12 3/2 13/8 | 3o6(3o2) = 3u7(3u4) | |
A{15,1o} | 15 | 3:7:9:15:21 | 1/1 7/6 5/4 3/2 7/4 | h7,z10 = r6,ry8 | Hendrix |
A{15,1u} | 15 | 15:21:35:45:105 | 1/1 7/6 7/5 3/2 7/4 | z7,zg5 = r6,g3 | Inverted Hendrix |
A{15,2o} | 15 | 3:9:11:15:33 | 1/1 5/4 11/8 3/2 11/6 | y,1o7,1o11 = 1u6,1u9(1uy4) | 11-Hendrix |
A{15,2u} | 15 | 15:33:45:55:165 | 1/1 11/10 11/8 3/2 11/6 | 1o7(1o4)1og9 = g,1u6,1u9 | Inverted 11-Hendrix |
A{15,3o} | 15 | 3:9:13:15:39 | 1/1 13/12 5/4 3/2 13/8 | y,3o6,3o9 = 3u7(3u4)3uy9 | 13-Hendrix |
A{15,3u} | 15 | 15:39:45:65:195 | 1/1 13/12 13/10 3/2 13/8 | 3o6,3o9(3og4) = g,3u7,3u11 | Inverted 13-Hendrix |
A{17,1o} | 17 | 3:9:15:17:51 | 1/1 17/16 5/4 17/12 3/2 | y,17o9,17o12 | 17-Hendrix |
A{17,1u} | 17 | 15:45:51:85:255 | 1/1 17/16 17/12 3/2 17/10 | 17og7(17o2)17o12 | Inverted 17-Hendrix |
A{19,1o} | 19 | 3:9:15:19:57 | 1/1 19/16 5/4 3/2 19/12 | 19o6,y3 = 19u7,19uy5 | 19-Hendrix |
A{19,1u} | 19 | 15:45:57:95:285 | 1/1 19/16 3/2 19/12 19/10 | 19o6,19og8 = 19u7,g3 | Inverted 19-Hendrix |
A{21,1o} | 21 | 3:5:9:15:21:45 | 1/1 5/4 3/2 5/3 7/4 15/8 | y6,z7,y7 = g9,zg9 | |
A{21,1u} | 21 | 7:15:21:35:63:105 | 1/1 15/14 9/8 5/4 3/2 15/8 | y9,ry8 = g7,g6,r6 | |
A{21,2o} | 21 | 3:7:9:15:21:63 | 1/1 7/6 5/4 21/16 3/2 7/4 | h7,z10,z11 = r6,ry8,9 | Hendrix add11? |
A{21,2u} | 21 | 5:15:21:35:45:105 | 1/1 21/20 9/8 21/16 3/2 7/4 | z9(z4)zg9 = z6,4,zg5 = r6,g3,r9 | blues scale |
A{21,3o} | 21 | 3:9:11:15:21:33 | 1/1 5/4 11/8 3/2 7/4 11/6 | h7,1o7,1o11 | |
A{21,3u} | 21 | 105:165:231:315:385:1155 | 1/1 12/11 6/5 3/2 18/11 12/7 | s6,1u6,1u9 | |
A{21,4o} | 21 | 3:9:13:15:21:39 | 1/1 13/12 5/4 3/2 13/8 7/4 | h7,3o6,3o9 | |
A{21,4u} | 21 | 105:195:273:315:455:1365 | 1/1 6/5 18/13 3/2 12/7 24/13 | s6,3u4,3u7 | |
A{21,5o} | 21 | 3:9:15:17:21:51 | 1/1 17/16 5/4 17/12 3/2 7/4 | h7,17o9,17o12 | dom7b9#11 |
A{21,5u} | 21 | 105:255:315:357:595:1785 | 1/1 18/17 6/5 24/17 3/2 12/7 | s6,17u8,17u11 | min6b9#11 |
A{21,6o} | 21 | 3:9:15:19:21:57 | 1/1 19/16 5/4 3/2 19/12 7/4 | 19o6,y3,z7 | dom7#9b13 |
A{21,6u} | 21 | 105:285:315:399:665:1995 | 1/1 6/5 24/19 3/2 12/7 36/19 | 19u7,g3,r6 | maj7#9,13 |
A{23,1o} | 23 | 3:9:15:21:23:69 | 1/1 5/4 23/16 3/2 7/4 23/12 | h7,23o5,23o8 | |
A{23,1u} | 23 | 105:315:345:483:805:2415 | 1/1 24/23 6/5 3/2 36/23 12/7 | s6,23u5,23u8 |