241edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
mNo edit summary
ArrowHead294 (talk | contribs)
m Partial undo
Line 12: Line 12:


== Regular temperament properties ==
== Regular temperament properties ==
{{comma basis begin}}
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3
| 2.3
| {{monzo| 382 -241 }}
| {{monzo| 382 -241 }}
| {{mapping| 241 382 }}
| {{mapping| 241 382 }}
| -0.038
| &minus;0.038
| 0.038
| 0.038
| 0.76
| 0.76
Line 24: Line 33:
| 78732/78125, {{monzo| 56 -28 -5 }}
| 78732/78125, {{monzo| 56 -28 -5 }}
| {{mapping| 241 382 560 }}
| {{mapping| 241 382 560 }}
| -0.322
| &minus;0.322
| 0.403
| 0.403
| 8.10
| 8.10
Line 31: Line 40:
| 3136/3125, 19683/19600, 829940/823543
| 3136/3125, 19683/19600, 829940/823543
| {{mapping| 241 382 560 677 }}
| {{mapping| 241 382 560 677 }}
| -0.431
| &minus;0.431
| 0.397
| 0.397
| 7.97
| 7.97
Line 38: Line 47:
| 540/539, 3136/3125, 8019/8000, 15488/15435
| 540/539, 3136/3125, 8019/8000, 15488/15435
| {{mapping| 241 382 560 677 834 }}
| {{mapping| 241 382 560 677 834 }}
| -0.425
| &minus;0.425
| 0.355
| 0.355
| 7.14
| 7.14
Line 45: Line 54:
| 351/350, 540/539, 676/675, 3136/3125, 10648/10647
| 351/350, 540/539, 676/675, 3136/3125, 10648/10647
| {{mapping| 241 382 560 677 834 892 }}
| {{mapping| 241 382 560 677 834 892 }}
| -0.397
| &minus;0.397
| 0.330
| 0.330
| 6.63
| 6.63
{{comma basis end}}
|}


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{{rank-2 begin}}
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br />per 8ve
! Generator*
! Cents*
! Associated<br />ratio*
! Temperaments
|-
|-
| 1
| 1
Line 82: Line 98:
| 4/3
| 4/3
| [[Gary]]
| [[Gary]]
{{rank-2 end}}
|}
{{orf}}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct


[[Category:Subpental]]
[[Category:Subpental]]

Revision as of 13:00, 16 November 2024

← 240edo 241edo 242edo →
Prime factorization 241 (prime)
Step size 4.97925 ¢ 
Fifth 141\241 (702.075 ¢)
Semitones (A1:m2) 23:18 (114.5 ¢ : 89.63 ¢)
Consistency limit 15
Distinct consistency limit 15

Template:EDO intro

Theory

241edo is distinctly consistent in the 15-odd-limit. It has a sharp tendency, with prime harmonics 3 through 13 all tuned sharp. The equal temperament tempers out 78732/78125 in the 5-limit, 19683/19600 and 3136/3125 in the 7-limit, 540/539, 43923/43904, 65536/65219, and 151263/151250 in the 11-limit, and 351/350, 676/675, 729/728, 1001/1000 and 2080/2079 in the 13-limit. It provides the optimal patent val for subpental.

Prime harmonics

Approximation of prime harmonics in 241edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.12 +2.07 +2.13 +1.38 +0.97 -0.39 +1.24 -0.89 +1.13 +0.19
Relative (%) +0.0 +2.4 +41.5 +42.7 +27.7 +19.4 -7.9 +24.9 -17.8 +22.7 +3.9
Steps
(reduced)
241
(0)
382
(141)
560
(78)
677
(195)
834
(111)
892
(169)
985
(21)
1024
(60)
1090
(126)
1171
(207)
1194
(230)

Subsets and supersets

241edo is the 53rd prime edo.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [382 -241 [241 382]] −0.038 0.038 0.76
2.3.5 78732/78125, [56 -28 -5 [241 382 560]] −0.322 0.403 8.10
2.3.5.7 3136/3125, 19683/19600, 829940/823543 [241 382 560 677]] −0.431 0.397 7.97
2.3.5.7.11 540/539, 3136/3125, 8019/8000, 15488/15435 [241 382 560 677 834]] −0.425 0.355 7.14
2.3.5.7.11.13 351/350, 540/539, 676/675, 3136/3125, 10648/10647 [241 382 560 677 834 892]] −0.397 0.330 6.63

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 20\241 99.59 200/189 Quintagar / quinsandric
1 50\241 248.96 [-26 18 -1 Monzismic
1 76\241 378.42 56/45 Subpental
1 89\241 443.15 162/125 Sensipent
1 100\241 497.93 4/3 Gary

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct