402edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
-rank-3 temps that are obvious from the commas ("parahemwuer" is just an alias for hemimean); note abigail and bischismic in the table of rank-2 temps
ArrowHead294 (talk | contribs)
mNo edit summary
Line 21: Line 21:


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{{comma basis begin}}
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" | Tuning Error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3
| 2.3
Line 44: Line 36:
| 0.2182
| 0.2182
| 7.31
| 7.31
|}
{{comma basis end}}


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{{rank-2 begin}}
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Generator*
! Cents*
! Associated<br>Ratio*
! Temperaments
|-
|-
| 1
| 1
Line 74: Line 60:
|-
|-
| 2
| 2
| 167\402<br>(34\402)
| 167\402<br />(34\402)
| 498.51<br>(101.49)
| 498.51<br />(101.49)
| 4/3<br>(200/189)
| 4/3<br />(200/189)
| [[Bischismic]] (402c, 7-limit)
| [[Bischismic]] (402c, 7-limit)
|}
{{rank-2 end}}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
{{orf}}

Revision as of 02:14, 16 November 2024

← 401edo 402edo 403edo →
Prime factorization 2 × 3 × 67
Step size 2.98507 ¢ 
Fifth 235\402 (701.493 ¢)
Semitones (A1:m2) 37:31 (110.4 ¢ : 92.54 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

402edo is only consistent to the 5-odd-limit. There are three possible mappings in the 7-limit:

  • 402 637 933 1129] (patent val)
  • 402 637 933 1128] (402d)
  • 402 637 934 1129] (402c)

Using the patent val, it tempers out the semicomma in the 5-limit; 4375/4374, 7381125/7340032 and 3200000/3176523 in the 7-limit. It supports abigail.

Using the 402d val, it tempers out 250047/250000, 1500625/1492992 and 2460375/2458624 in the 7-limit.

Using the 402c val, it tempers out the schisma in the 5-limit; and 3136/3125, 321489/320000 and 13060694016/12867859375 in the 7-limit. It supports bischismic.

Odd harmonics

Approximation of odd harmonics in 402edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.46 -1.24 +1.32 -0.92 +0.92 +1.26 +1.28 -0.48 +0.99 +0.86 -1.41
Relative (%) -15.5 -41.5 +44.3 -31.0 +30.8 +42.3 +43.0 -16.0 +33.3 +28.8 -47.2
Steps
(reduced)
637
(235)
933
(129)
1129
(325)
1274
(68)
1391
(185)
1488
(282)
1571
(365)
1643
(35)
1708
(100)
1766
(158)
1818
(210)

Subsets and supersets

Since 402 factors into 2 × 3 × 67, 402edo has subset edos 2, 3, 6, 67, 134, and 201. 804edo, which doubles it, gives a good correction to the harmonics 5 and 7.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [-637 402 | [402 637]] | 0.1459 | 0.1459 | 4.89 |- | 2.3.5 | 2109375/2097152, [25 -48 22 | [402 637 933]] | 0.2752 | 0.2182 | 7.31 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 91\402 | 271.64 | 75/64 | Orson (402) |- | 1 | 115\402 | 343.28 | 8000/6561 | Raider (402) |- | 2 | 70\402 | 208.96 | 44/39 | Abigail (402) |- | 2 | 167\402
(34\402) | 498.51
(101.49) | 4/3
(200/189) | Bischismic (402c, 7-limit) Template:Rank-2 end Template:Orf