User:Xenllium/Xenllium's circulating scales: Difference between revisions
fixed typo (cube-root rather than square-root in ratio) |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
== Xentwelve == | == Xentwelve == | ||
'''Xentwelve''' is a 12-tone circulating scale based on [[12edo|12 equal temperament]]. In summary, it is close to [[1/3-comma meantone]] in the natural keys and [[Pythagorean tuning]] in the remote keys. The generator is a perfect fifth, which comes in three sizes, with eight pure fifths (at C–G, C♯–G♯, E♭–B♭, E–B, F–C, F♯–C♯, B♭–F and B–F♯, frequency ratio [[3/2]]), three 1/3-comma meantone fifths (at D–A, G–D and A–E | '''Xentwelve''' is a 12-tone circulating scale based on [[12edo|12 equal temperament]]. In summary, it is close to [[1/3-comma meantone]] in the natural keys and [[Pythagorean tuning]] in the remote keys. The generator is a perfect fifth, which comes in three sizes, with eight pure fifths (at C–G, C♯–G♯, E♭–B♭, E–B, F–C, F♯–C♯, B♭–F and B–F♯, frequency ratio [[3/2]]), three 1/3-comma meantone fifths (at D–A, G–D and A–E), and one schisma-compressed fifth (at G♯–D♯ (A♭–E♭), frequency ratio [[16384/10935]]). It derives two major thirds exact [[5/4]] (at C–E and G–B) and one minor third exact [[6/5]] (at E–G), with a pure major triad (at C–E–G) and a pure minor triad (at E–G–B). | ||
<pre> | <pre> | ||
Line 8: | Line 8: | ||
! | ! | ||
Xentwelve, Xenllium's 12-tone circulating scale, Central A | Xentwelve, Xenllium's 12-tone circulating scale, Central A | ||
12 | |||
! | ! | ||
104.56252207087 | |||
196.74123853187 | |||
308.47252380165 | |||
400.65124026264 | |||
505.21376233352 | |||
602.60752120549 | |||
694.78623766648 | |||
806.51752293626 | |||
898.69623939726 | |||
1010.42752466704 | |||
1102.60624112803 | |||
1200.00000000000 | |||
</pre> | </pre> | ||
=== Intervals === | |||
By the definition, there are no fifths larger than pure 3/2, no major thirds larger than Pythagorean 81/64, no minor thirds smaller than Pythagorean 32/27, and no whole tones larger than Pythagorean 9/8. Major thirds and minor thirds come in five sizes, whole tones and semitones come in four sizes respectively. | |||
<div class="toccolours mw-collapsible mw-collapsed" style="width:500px; overflow:auto;"> | |||
<div style="line-height:1.6;">'''Sizes and occurrences of fifth and fourth'''</div> | |||
<div class="mw-collapsible-content"> | |||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
! colspan="4" | Fifth (7-step) | ! colspan="4" | Fifth (7-step) | ||
! colspan="4" | Fourth (5-step) | ! colspan="4" | Fourth (5-step) | ||
Line 65: | Line 70: | ||
| +0.00000 | | +0.00000 | ||
|} | |} | ||
</div></div> | |||
<div class="toccolours mw-collapsible mw-collapsed" style="width:500px; overflow:auto;"> | |||
<div style="line-height:1.6;">'''Sizes and occurrences of major third and minor third'''</div> | |||
<div class="mw-collapsible-content"> | |||
{| class="wikitable center-all left-4 left-8" | {| class="wikitable center-all left-4 left-8" | ||
! colspan="4" | Major third (4-step) | ! colspan="4" | Major third (4-step) | ||
! colspan="4" | Minor third (3-step) | ! colspan="4" | Minor third (3-step) | ||
Line 128: | Line 136: | ||
| +0.00000 | | +0.00000 | ||
|} | |} | ||
</div></div> | |||
<div class="toccolours mw-collapsible mw-collapsed" style="width:500px; overflow:auto;"> | |||
<div style="line-height:1.6;">'''Sizes and occurrences of whole tone and semitone'''</div> | |||
<div class="mw-collapsible-content"> | |||
{| class="wikitable center-all left-3 left-6" | |||
! colspan="3" | Whole tone | |||
! colspan="3" | Semitone | |||
|- | |||
! Occurrences | |||
! Ratio | |||
! Cents | |||
! Occurrences | |||
! Ratio | |||
! Cents | |||
|- | |||
| D–E <br> G–A | |||
| <math>\sqrt[3]{25/18}</math> | |||
| 189.57248 | |||
| rowspan="3" | C–D♭ <br> D♯–E <br> F–G♭ <br> G–A♭ <br> A♯–B | |||
| rowspan="3" | <math>135/128</math> | |||
| rowspan="3" | 92.17872 | |||
|- | |||
| C–D <br> A–B | |||
| <math>\sqrt[3]{45/32}</math> | |||
| 196.74124 | |||
|- | |||
| rowspan="2" | D♭–E♭ <br> A♭–B♭ | |||
| rowspan="2" | <math>4096/3645</math> | |||
| rowspan="2" | 201.95628 | |||
|- | |||
| rowspan="2" | D–E♭<br>G♯–A | |||
| rowspan="2" | <math>\sqrt[3]{1048576/885735}</math> | |||
| rowspan="2" | 97.39376 | |||
|- | |||
| rowspan="3" | E♭–F <br> E–F♯ <br> F–G <br> F♯–G♯ <br> B♭–C <br>B–C♯ | |||
| rowspan="3" | <math>9/8</math> | |||
| rowspan="3" | 203.91000 | |||
|- | |||
| C♯–D <br> A–B♭ | |||
| <math>\sqrt[3]{65536/54675}</math> | |||
| 104.56252 | |||
|- | |||
| E–F <br> F♯–G <br> B–C | |||
| <math>16/15</math> | |||
| 111.73129 | |||
|} | |||
</div></div> | |||
=== Music === | |||
* ''[https://youtube.com/watch?v=QOFBKfCYThI Xentwelve tuning]'' – demonstration of Xentwelve tuning | |||
* [https://youtube.com/watch?v=bbJ0HjPAuaA <span lang="ja" style="font-family:Yu Gothic UI, Yu Gothic, Meiryo, MS PGothic, sans-serif">【オリジナル曲】かなしいこと</span> / The sadness] | |||
== 31-tone circulating scales == | |||
'''Xenthirtyone''' is a 31-tone circulating scale based on [[31edo|31 equal temperament]]. There are two circulating scales, named ''Xenthirtyone I'' and ''Xenthirtyone II'', generated by a major third, which comes in three sizes, with twenty-two pure major thirds, eight 1/4-Würschmidt-comma-stretched major thirds, and one luna-comma-stretched major third. | |||
=== Xenthirtyone I === | |||
<pre> | |||
! xenthirtyone1.scl | |||
! | |||
Xenthirtyone I, Xenllium's 31-tone circulating scale | |||
31 | |||
! | |||
128/125 | |||
73.53374935096 | |||
16/15 | |||
2048/1875 | |||
262144/234375 | |||
9375/8192 | |||
75/64 | |||
6/5 | |||
348.11617794602 | |||
5/4 | |||
32/25 | |||
462.70878570247 | |||
4/3 | |||
512/375 | |||
65536/46875 | |||
46875/32768 | |||
375/256 | |||
3/2 | |||
737.29121429753 | |||
25/16 | |||
8/5 | |||
851.88382205398 | |||
5/3 | |||
128/75 | |||
16384/9375 | |||
234375/131072 | |||
1875/1024 | |||
15/8 | |||
1126.46625064904 | |||
125/64 | |||
2/1 | |||
</pre> | |||
=== Xenthirtyone II === | |||
<pre> | |||
! xenthirtyone2.scl | |||
! | |||
Xenthirtyone II, Xenllium's 31-tone circulating scale | |||
31 | |||
! | |||
128/125 | |||
79.25639432431 | |||
117.45393024313 | |||
155.65146616195 | |||
262144/234375 | |||
9375/8192 | |||
271.72110610838 | |||
309.91864202720 | |||
348.11617794602 | |||
5/4 | |||
32/25 | |||
465.57010818915 | |||
503.76764410797 | |||
541.96518002679 | |||
65536/46875 | |||
46875/32768 | |||
658.03481997321 | |||
696.23235589203 | |||
734.42989181085 | |||
25/16 | |||
8/5 | |||
851.88382205398 | |||
890.08135797280 | |||
928.27889389162 | |||
16384/9375 | |||
234375/131072 | |||
1044.34853383805 | |||
1082.54606975687 | |||
1120.74360567569 | |||
125/64 | |||
2/1 | |||
</pre> | |||
[[Category:Pages with Scala files]] | |||
[[Category:12-tone scales]] | [[Category:12-tone scales]] | ||
[[Category:31-tone scales]] | |||
[[Category:Tempered scales]] | [[Category:Tempered scales]] |
Latest revision as of 14:02, 22 September 2024
Below are listed circulating scales introduced by Xenllium.
Xentwelve
Xentwelve is a 12-tone circulating scale based on 12 equal temperament. In summary, it is close to 1/3-comma meantone in the natural keys and Pythagorean tuning in the remote keys. The generator is a perfect fifth, which comes in three sizes, with eight pure fifths (at C–G, C♯–G♯, E♭–B♭, E–B, F–C, F♯–C♯, B♭–F and B–F♯, frequency ratio 3/2), three 1/3-comma meantone fifths (at D–A, G–D and A–E), and one schisma-compressed fifth (at G♯–D♯ (A♭–E♭), frequency ratio 16384/10935). It derives two major thirds exact 5/4 (at C–E and G–B) and one minor third exact 6/5 (at E–G), with a pure major triad (at C–E–G) and a pure minor triad (at E–G–B).
! xentwelve_a.scl ! Xentwelve, Xenllium's 12-tone circulating scale, Central A 12 ! 104.56252207087 196.74123853187 308.47252380165 400.65124026264 505.21376233352 602.60752120549 694.78623766648 806.51752293626 898.69623939726 1010.42752466704 1102.60624112803 1200.00000000000
Intervals
By the definition, there are no fifths larger than pure 3/2, no major thirds larger than Pythagorean 81/64, no minor thirds smaller than Pythagorean 32/27, and no whole tones larger than Pythagorean 9/8. Major thirds and minor thirds come in five sizes, whole tones and semitones come in four sizes respectively.
Fifth (7-step) | Fourth (5-step) | ||||||
---|---|---|---|---|---|---|---|
Occurrences | Ratio | Cents | Error from 3/2 |
Occurrences | Ratio | Cents | Error from 4/3 |
D–A G–D A–E |
[math]\displaystyle{ \sqrt[3]{10/3} }[/math] | 694.78624 | −7.16876 | D–G E–A A–D |
[math]\displaystyle{ \sqrt[3]{12/5} }[/math] | 505.21376 | +7.16876 |
G♯–D♯ (A♭–E♭) |
[math]\displaystyle{ 16384/10935 }[/math] | 700.00128 | −1.95372 | D♯–G♯ (E♭–A♭) |
[math]\displaystyle{ 10935/8192 }[/math] | 499.99872 | +1.95372 |
C–G C♯–G♯ E♭–B♭ E–B F–C F♯–C♯ B♭–F B–F♯ |
[math]\displaystyle{ 3/2 }[/math] | 701.95500 | +0.00000 | C–F C♯–F♯ F–B♭ F♯–B G–C G♯–C♯ B♭–E♭ B–E |
[math]\displaystyle{ 4/3 }[/math] | 498.04500 | +0.00000 |
Major third (4-step) | Minor third (3-step) | ||||||
---|---|---|---|---|---|---|---|
Occurrences | Ratio | Cents | Error from 5/4 |
Occurrences | Ratio | Cents | Error from 6/5 |
C–E G–B |
[math]\displaystyle{ 5/4 }[/math] | 386.31371 | +0.00000 | C–E♭ C♯–E G–B♭ G♯–B |
[math]\displaystyle{ 32/27 }[/math] | 294.13500 | −21.50629 |
D–F♯ F–A |
[math]\displaystyle{ \sqrt[3]{(45/32)^{2}} }[/math] | 393.48248 | +7.16876 | ||||
A–C♯ B♭–D |
[math]\displaystyle{ \sqrt[3]{32805/16384} }[/math] | 400.65124 | +14.33753 | E♭–G♭ F–A♭ B♭–D♭ |
[math]\displaystyle{ 1215/1024 }[/math] | 296.08872 | −19.55257 |
D♭–F G♭–B♭ A♭–C B–D♯ |
[math]\displaystyle{ 512/405 }[/math] | 405.86628 | +19.55257 | ||||
D–F F♯–A |
[math]\displaystyle{ \sqrt[3]{2048/1215} }[/math] | 301.30376 | −14.33753 | ||||
A–C B–D |
[math]\displaystyle{ \sqrt[3]{128/75} }[/math] | 308.47252 | −7.16876 | ||||
E♭–G E–G♯ |
[math]\displaystyle{ 81/64 }[/math] | 407.82000 | +21.50629 | ||||
E–G | [math]\displaystyle{ 6/5 }[/math] | 315.64129 | +0.00000 |
Whole tone | Semitone | ||||
---|---|---|---|---|---|
Occurrences | Ratio | Cents | Occurrences | Ratio | Cents |
D–E G–A |
[math]\displaystyle{ \sqrt[3]{25/18} }[/math] | 189.57248 | C–D♭ D♯–E F–G♭ G–A♭ A♯–B |
[math]\displaystyle{ 135/128 }[/math] | 92.17872 |
C–D A–B |
[math]\displaystyle{ \sqrt[3]{45/32} }[/math] | 196.74124 | |||
D♭–E♭ A♭–B♭ |
[math]\displaystyle{ 4096/3645 }[/math] | 201.95628 | |||
D–E♭ G♯–A |
[math]\displaystyle{ \sqrt[3]{1048576/885735} }[/math] | 97.39376 | |||
E♭–F E–F♯ F–G F♯–G♯ B♭–C B–C♯ |
[math]\displaystyle{ 9/8 }[/math] | 203.91000 | |||
C♯–D A–B♭ |
[math]\displaystyle{ \sqrt[3]{65536/54675} }[/math] | 104.56252 | |||
E–F F♯–G B–C |
[math]\displaystyle{ 16/15 }[/math] | 111.73129 |
Music
- Xentwelve tuning – demonstration of Xentwelve tuning
- 【オリジナル曲】かなしいこと / The sadness
31-tone circulating scales
Xenthirtyone is a 31-tone circulating scale based on 31 equal temperament. There are two circulating scales, named Xenthirtyone I and Xenthirtyone II, generated by a major third, which comes in three sizes, with twenty-two pure major thirds, eight 1/4-Würschmidt-comma-stretched major thirds, and one luna-comma-stretched major third.
Xenthirtyone I
! xenthirtyone1.scl ! Xenthirtyone I, Xenllium's 31-tone circulating scale 31 ! 128/125 73.53374935096 16/15 2048/1875 262144/234375 9375/8192 75/64 6/5 348.11617794602 5/4 32/25 462.70878570247 4/3 512/375 65536/46875 46875/32768 375/256 3/2 737.29121429753 25/16 8/5 851.88382205398 5/3 128/75 16384/9375 234375/131072 1875/1024 15/8 1126.46625064904 125/64 2/1
Xenthirtyone II
! xenthirtyone2.scl ! Xenthirtyone II, Xenllium's 31-tone circulating scale 31 ! 128/125 79.25639432431 117.45393024313 155.65146616195 262144/234375 9375/8192 271.72110610838 309.91864202720 348.11617794602 5/4 32/25 465.57010818915 503.76764410797 541.96518002679 65536/46875 46875/32768 658.03481997321 696.23235589203 734.42989181085 25/16 8/5 851.88382205398 890.08135797280 928.27889389162 16384/9375 234375/131072 1044.34853383805 1082.54606975687 1120.74360567569 125/64 2/1