User:Xenllium/Xenllium's circulating scales: Difference between revisions
Jump to navigation
Jump to search
fixed typo (cube-root rather than square-root in ratio) |
No edit summary |
||
Line 2: | Line 2: | ||
== Xentwelve == | == Xentwelve == | ||
'''Xentwelve''' is a 12-tone circulating scale based on [[12edo|12 equal temperament]]. In summary, it is close to [[1/3-comma meantone]] in the natural keys and [[Pythagorean tuning]] in the remote keys. The generator is a perfect fifth, which comes in three sizes, with eight pure fifths (at C–G, C♯–G♯, E♭–B♭, E–B, F–C, F♯–C♯, B♭–F and B–F♯, frequency ratio [[3/2]]), three 1/3-comma meantone fifths (at D–A, G–D and A–E | '''Xentwelve''' is a 12-tone circulating scale based on [[12edo|12 equal temperament]]. In summary, it is close to [[1/3-comma meantone]] in the natural keys and [[Pythagorean tuning]] in the remote keys. The generator is a perfect fifth, which comes in three sizes, with eight pure fifths (at C–G, C♯–G♯, E♭–B♭, E–B, F–C, F♯–C♯, B♭–F and B–F♯, frequency ratio [[3/2]]), three 1/3-comma meantone fifths (at D–A, G–D and A–E), and one narrow schismic fifth (at G♯–D♯ (A♭–E♭), frequency ratio [[16384/10935]]). It derives two major thirds exact [[5/4]] (at C–E and G–B) and one minor third exact [[6/5]] (at E–G), with a pure major chord (at C–E–G) and a pure minor chord (at E–G–B). | ||
<pre> | <pre> | ||
Line 24: | Line 24: | ||
</pre> | </pre> | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:500px; overflow:auto;"> | |||
<div style="line-height:1.6;">'''Sizes and occurrences of fifth and fourth'''</div> | |||
<div class="mw-collapsible-content"> | |||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
! colspan="4" | Fifth (7-step) | ! colspan="4" | Fifth (7-step) | ||
! colspan="4" | Fourth (5-step) | ! colspan="4" | Fourth (5-step) | ||
Line 65: | Line 67: | ||
| +0.00000 | | +0.00000 | ||
|} | |} | ||
</div></div> | |||
<div class="toccolours mw-collapsible mw-collapsed" style="width:500px; overflow:auto;"> | |||
<div style="line-height:1.6;">'''Sizes and occurrences of major third and minor third'''</div> | |||
<div class="mw-collapsible-content"> | |||
{| class="wikitable center-all left-4 left-8" | {| class="wikitable center-all left-4 left-8" | ||
! colspan="4" | Major third (4-step) | ! colspan="4" | Major third (4-step) | ||
! colspan="4" | Minor third (3-step) | ! colspan="4" | Minor third (3-step) | ||
Line 128: | Line 134: | ||
| +0.00000 | | +0.00000 | ||
|} | |} | ||
</div></div> | |||
<div class="toccolours mw-collapsible mw-collapsed" style="width:500px; overflow:auto;"> | |||
<div style="line-height:1.6;">'''Sizes and occurrences of whole tone and semitone'''</div> | |||
<div class="mw-collapsible-content"> | |||
{| class="wikitable center-all left-3 left-6" | |||
! colspan="3" | Whole tone | |||
! colspan="3" | Semitone | |||
|- | |||
! Occurrences | |||
! Ratio | |||
! Cents | |||
! Occurrences | |||
! Ratio | |||
! Cents | |||
|- | |||
| D–E <br> G–A | |||
| <math>\sqrt[3]{25/18}</math> | |||
| 189.57248 | |||
| rowspan="3" | C–D♭ <br> D♯–E <br> F–G♭ <br> G–A♭ <br> A♯–B | |||
| rowspan="3" | <math>135/128</math> | |||
| rowspan="3" | 92.17872 | |||
|- | |||
| C–D <br> A–B | |||
| <math>\sqrt[3]{45/32}</math> | |||
| 196.74124 | |||
|- | |||
| rowspan="2" | D♭–E♭ <br> A♭–B♭ | |||
| rowspan="2" | <math>4096/3645</math> | |||
| rowspan="2" | 201.95628 | |||
|- | |||
| rowspan="2" | D–E♭<br>G♯–A | |||
| rowspan="2" | <math>\sqrt[3]{1048576/885735}</math> | |||
| rowspan="2" | 97.39376 | |||
|- | |||
| rowspan="3" | E♭–F <br> E–F♯ <br> F–G <br> F♯–G♯ <br> B♭–C <br>B–C♯ | |||
| rowspan="3" | <math>9/8</math> | |||
| rowspan="3" | 203.91000 | |||
|- | |||
| C♯–D <br> A–B♭ | |||
| <math>\sqrt[3]{65536/54675}</math> | |||
| 104.56252 | |||
|- | |||
| E–F <br> F♯–G <br> B–C | |||
| <math>16/15</math> | |||
| 111.73129 | |||
|} | |||
</div></div> | |||
[[Category:12-tone scales]] | [[Category:12-tone scales]] | ||
[[Category:Tempered scales]] | [[Category:Tempered scales]] |
Revision as of 12:52, 3 January 2024
Below are listed circulating scales introduced by Xenllium.
Xentwelve
Xentwelve is a 12-tone circulating scale based on 12 equal temperament. In summary, it is close to 1/3-comma meantone in the natural keys and Pythagorean tuning in the remote keys. The generator is a perfect fifth, which comes in three sizes, with eight pure fifths (at C–G, C♯–G♯, E♭–B♭, E–B, F–C, F♯–C♯, B♭–F and B–F♯, frequency ratio 3/2), three 1/3-comma meantone fifths (at D–A, G–D and A–E), and one narrow schismic fifth (at G♯–D♯ (A♭–E♭), frequency ratio 16384/10935). It derives two major thirds exact 5/4 (at C–E and G–B) and one minor third exact 6/5 (at E–G), with a pure major chord (at C–E–G) and a pure minor chord (at E–G–B).
! xentwelve_a.scl ! Xentwelve, Xenllium's 12-tone circulating scale, Central A 12 ! 104.56252207087 196.74123853187 308.47252380165 400.65124026264 505.21376233352 602.60752120549 694.78623766648 806.51752293626 898.69623939726 1010.42752466704 1102.60624112803 1200.00000000000
Sizes and occurrences of fifth and fourth
Fifth (7-step) | Fourth (5-step) | ||||||
---|---|---|---|---|---|---|---|
Occurrences | Ratio | Cents | Error from 3/2 |
Occurrences | Ratio | Cents | Error from 4/3 |
D–A G–D A–E |
[math]\displaystyle{ \sqrt[3]{10/3} }[/math] | 694.78624 | −7.16876 | D–G E–A A–D |
[math]\displaystyle{ \sqrt[3]{12/5} }[/math] | 505.21376 | +7.16876 |
G♯–D♯ (A♭–E♭) |
[math]\displaystyle{ 16384/10935 }[/math] | 700.00128 | −1.95372 | D♯–G♯ (E♭–A♭) |
[math]\displaystyle{ 10935/8192 }[/math] | 499.99872 | +1.95372 |
C–G C♯–G♯ E♭–B♭ E–B F–C F♯–C♯ B♭–F B–F♯ |
[math]\displaystyle{ 3/2 }[/math] | 701.95500 | +0.00000 | C–F C♯–F♯ F–B♭ F♯–B G–C G♯–C♯ B♭–E♭ B–E |
[math]\displaystyle{ 4/3 }[/math] | 498.04500 | +0.00000 |
Sizes and occurrences of major third and minor third
Major third (4-step) | Minor third (3-step) | ||||||
---|---|---|---|---|---|---|---|
Occurrences | Ratio | Cents | Error from 5/4 |
Occurrences | Ratio | Cents | Error from 6/5 |
C–E G–B |
[math]\displaystyle{ 5/4 }[/math] | 386.31371 | +0.00000 | C–E♭ C♯–E G–B♭ G♯–B |
[math]\displaystyle{ 32/27 }[/math] | 294.13500 | −21.50629 |
D–F♯ F–A |
[math]\displaystyle{ \sqrt[3]{(45/32)^{2}} }[/math] | 393.48248 | +7.16876 | ||||
A–C♯ B♭–D |
[math]\displaystyle{ \sqrt[3]{32805/16384} }[/math] | 400.65124 | +14.33753 | E♭–G♭ F–A♭ B♭–D♭ |
[math]\displaystyle{ 1215/1024 }[/math] | 296.08872 | −19.55257 |
D♭–F G♭–B♭ A♭–C B–D♯ |
[math]\displaystyle{ 512/405 }[/math] | 405.86628 | +19.55257 | ||||
D–F F♯–A |
[math]\displaystyle{ \sqrt[3]{2048/1215} }[/math] | 301.30376 | −14.33753 | ||||
A–C B–D |
[math]\displaystyle{ \sqrt[3]{128/75} }[/math] | 308.47252 | −7.16876 | ||||
E♭–G E–G♯ |
[math]\displaystyle{ 81/64 }[/math] | 407.82000 | +21.50629 | ||||
E–G | [math]\displaystyle{ 6/5 }[/math] | 315.64129 | +0.00000 |
Sizes and occurrences of whole tone and semitone
Whole tone | Semitone | ||||
---|---|---|---|---|---|
Occurrences | Ratio | Cents | Occurrences | Ratio | Cents |
D–E G–A |
[math]\displaystyle{ \sqrt[3]{25/18} }[/math] | 189.57248 | C–D♭ D♯–E F–G♭ G–A♭ A♯–B |
[math]\displaystyle{ 135/128 }[/math] | 92.17872 |
C–D A–B |
[math]\displaystyle{ \sqrt[3]{45/32} }[/math] | 196.74124 | |||
D♭–E♭ A♭–B♭ |
[math]\displaystyle{ 4096/3645 }[/math] | 201.95628 | |||
D–E♭ G♯–A |
[math]\displaystyle{ \sqrt[3]{1048576/885735} }[/math] | 97.39376 | |||
E♭–F E–F♯ F–G F♯–G♯ B♭–C B–C♯ |
[math]\displaystyle{ 9/8 }[/math] | 203.91000 | |||
C♯–D A–B♭ |
[math]\displaystyle{ \sqrt[3]{65536/54675} }[/math] | 104.56252 | |||
E–F F♯–G B–C |
[math]\displaystyle{ 16/15 }[/math] | 111.73129 |