482edo: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
Cleanup; +subsets and supersets |
||
Line 3: | Line 3: | ||
== Theory == | == Theory == | ||
482edo has good approximations of [[harmonic]]s [[3/1|3]], [[5/1|5]], [[7/1|7]], [[17/1|17]], [[31/1|31]], and [[37/1|37]]. [[11/1|11]] and [[13/1|13]] have rather large errors, but they are reasonable to work with. | |||
In the 7-limit, 482edo provides excellent tuning for the [[tertiaseptal]] temperament. | In the 7-limit, 482edo provides excellent tuning for the [[tertiaseptal]] temperament. | ||
Line 9: | Line 9: | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|482}} | {{Harmonics in equal|482}} | ||
=== Subsets and supersets === | |||
Since 482 factors into {{factorization|482}}, 482edo contains [[2edo]] and [[241edo]] as subsets. | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning Error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 23: | Line 26: | ||
| 2.3.5 | | 2.3.5 | ||
| {{monzo| 24 -21 4 }}, {{monzo| -59 5 22 }} | | {{monzo| 24 -21 4 }}, {{monzo| -59 5 22 }} | ||
| | | {{mapping| 482 764 1119 }} | ||
| +0.0353 | | +0.0353 | ||
| 0.0587 | | 0.0587 | ||
Line 30: | Line 33: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 2401/2400, 65625/65536, {{monzo| 8 -20 9 1 }} | | 2401/2400, 65625/65536, {{monzo| 8 -20 9 1 }} | ||
| | | {{mapping| 482 764 1119 1353 }} | ||
| +0.0587 | | +0.0587 | ||
| 0.1018 | | 0.1018 | ||
Line 37: | Line 40: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 2401/2400, 9801/9800, 19712/19683, 65625/65536 | | 2401/2400, 9801/9800, 19712/19683, 65625/65536 | ||
| | | {{mapping| 482 764 1119 1353 1667 }} | ||
| +0.1111 | | +0.1111 | ||
| 0.1389 | | 0.1389 | ||
| 5.58 | | 5.58 | ||
|- | |- | ||
| 2.3.5.7.11.13 | | style="border-top: double;" | 2.3.5.7.11.13 | ||
| 676/675, 1001/1000, 1716/1715, 10648/10647, 65625/65536 | | style="border-top: double;" | 676/675, 1001/1000, 1716/1715, 10648/10647, 65625/65536 | ||
| | | style="border-top: double;" | {{mapping| 482 764 1119 1353 1667 1783 }} (482f) | ||
| +0.1612 | | style="border-top: double;" | +0.1612 | ||
| 0.1692 | | style="border-top: double;" | 0.1692 | ||
| 6.80 | | style="border-top: double;" | 6.80 | ||
|- | |- | ||
| 2.3.5.7.11.13 | | style="border-top: double;" | 2.3.5.7.11.13 | ||
| 625/624, 847/845, 2401/2400, 9801/9800, 35750/35721 | | style="border-top: double;" | 625/624, 847/845, 2401/2400, 9801/9800, 35750/35721 | ||
| | | style="border-top: double;" | {{mapping| 482 764 1119 1353 1667 1784 }} (482) | ||
| +0.0491 | | style="border-top: double;" | +0.0491 | ||
| 0.1880 | | style="border-top: double;" | 0.1880 | ||
| 7.55 | | style="border-top: double;" | 7.55 | ||
|} | |} | ||
Revision as of 06:20, 3 November 2023
← 481edo | 482edo | 483edo → |
Theory
482edo has good approximations of harmonics 3, 5, 7, 17, 31, and 37. 11 and 13 have rather large errors, but they are reasonable to work with.
In the 7-limit, 482edo provides excellent tuning for the tertiaseptal temperament.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.12 | -0.42 | -0.36 | -1.11 | +0.97 | -0.39 | +1.24 | -0.89 | +1.13 | +0.19 |
Relative (%) | +0.0 | +4.8 | -16.9 | -14.5 | -44.6 | +38.8 | -15.7 | +49.9 | -35.7 | +45.3 | +7.7 | |
Steps (reduced) |
482 (0) |
764 (282) |
1119 (155) |
1353 (389) |
1667 (221) |
1784 (338) |
1970 (42) |
2048 (120) |
2180 (252) |
2342 (414) |
2388 (460) |
Subsets and supersets
Since 482 factors into 2 × 241, 482edo contains 2edo and 241edo as subsets.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | [24 -21 4⟩, [-59 5 22⟩ | [⟨482 764 1119]] | +0.0353 | 0.0587 | 4.33 |
2.3.5.7 | 2401/2400, 65625/65536, [8 -20 9 1⟩ | [⟨482 764 1119 1353]] | +0.0587 | 0.1018 | 4.09 |
2.3.5.7.11 | 2401/2400, 9801/9800, 19712/19683, 65625/65536 | [⟨482 764 1119 1353 1667]] | +0.1111 | 0.1389 | 5.58 |
2.3.5.7.11.13 | 676/675, 1001/1000, 1716/1715, 10648/10647, 65625/65536 | [⟨482 764 1119 1353 1667 1783]] (482f) | +0.1612 | 0.1692 | 6.80 |
2.3.5.7.11.13 | 625/624, 847/845, 2401/2400, 9801/9800, 35750/35721 | [⟨482 764 1119 1353 1667 1784]] (482) | +0.0491 | 0.1880 | 7.55 |