1051edo: Difference between revisions
Jump to navigation
Jump to search
Created page with "{{Infobox ET}} {{EDO intro|1051}} == Theory == 1051et tempers out 2460375/2458624 in the 7-limit; 820125/819896, 2097152/2096325, 514714375/514434888, 180224/180075, 184549376..." |
→Regular temperament properties: plz note 2.3.15 is equivalent to 2.3.5 and 2.3.15.35 is equivalent to 2.3.5.7. It doesn't seem to be supporting edson in any obvious way, either |
||
Line 8: | Line 8: | ||
===Subsets and supersets=== | ===Subsets and supersets=== | ||
1051edo is the 177th [[prime edo]]. 2102edo, which doubles it, gives a good correction to the harmonic 5. 4212edo, which quadruples it, gives a good correction to the harmonic 7. | 1051edo is the 177th [[prime edo]]. 2102edo, which doubles it, gives a good correction to the harmonic 5. 4212edo, which quadruples it, gives a good correction to the harmonic 7. | ||
==Regular temperament properties== | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" |[[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" |[[Comma list|Comma List]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" |[[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" |Optimal<br>8ve Stretch (¢) | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
! colspan="2" |Tuning Error | ! colspan="2" | Tuning Error | ||
|- | |- | ||
![[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
![[TE simple badness|Relative]] (%) | ! [[TE simple badness|Relative]] (%) | ||
|- | |- | ||
|2.3 | | 2.3 | ||
|{{monzo|1666 -1051}} | | {{monzo| 1666 -1051 }} | ||
|{{val|1051 1666}} | | {{val| 1051 1666 }} | ||
| -0.0736 | | -0.0736 | ||
| 0.0736 | | 0.0736 | ||
| 6.45 | | 6.45 | ||
|- | |- | ||
|2.3. | | 2.3.5 | ||
|{{monzo|-68 | | {{monzo| -68 18 17 }}, {{monzo| -26 -29 31 }} | ||
|{{val|1051 1666 | | {{val| 1051 1666 2440 }} (1051) | ||
| | | +0.0077 | ||
| 0. | | 0.1298 | ||
| | | 11.4 | ||
|- | |- | ||
|2.3. | | 2.3.5 | ||
| {{monzo| 40 7 -22 }}, {{monzo| 63 -50 7 }} | |||
|{{ | | {{val| 1051 1666 2441 }} (1051c) | ||
| -0.1562 | |||
| 0.1313 | |||
| 11.5 | |||
|- | |||
|{{val|1051 1666 | |||
| -0. | |||
| 0. | |||
| | |||
|} | |} | ||
<!-- | |||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator<br>( | ! Generator<br>(Reduced) | ||
! Cents<br>( | ! Cents<br>(Reduced) | ||
! Associated<br> | ! Associated<br>Ratio | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
|} | |} | ||
--> | |||
== Music == | == Music == | ||
*[https://www.youtube.com/watch?v=e1lARtnPl1E you have to run!] by [[User:Francium|Francium]] | *[https://www.youtube.com/watch?v=e1lARtnPl1E you have to run!] by [[User:Francium|Francium]] |
Revision as of 08:19, 8 May 2023
← 1050edo | 1051edo | 1052edo → |
Theory
1051et tempers out 2460375/2458624 in the 7-limit; 820125/819896, 2097152/2096325, 514714375/514434888, 180224/180075, 184549376/184528125, 43923/43904 and 20614528/20588575 in the 11-limit. From a regular temperament perspective, 1051edo only has a consistency limit of 3 and does poorly with approximating the harmonics 5 and 7. However, 1051edo has a good representation of the 2.3.11.13.15.17.19.35 subgroup.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.233 | -0.396 | +0.537 | +0.467 | +0.157 | -0.185 | -0.162 | +0.087 | +0.489 | -0.372 | -0.301 |
Relative (%) | +20.4 | -34.6 | +47.0 | +40.9 | +13.7 | -16.2 | -14.2 | +7.7 | +42.8 | -32.6 | -26.4 | |
Steps (reduced) |
1666 (615) |
2440 (338) |
2951 (849) |
3332 (179) |
3636 (483) |
3889 (736) |
4106 (953) |
4296 (92) |
4465 (261) |
4616 (412) |
4754 (550) |
Subsets and supersets
1051edo is the 177th prime edo. 2102edo, which doubles it, gives a good correction to the harmonic 5. 4212edo, which quadruples it, gives a good correction to the harmonic 7.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [1666 -1051⟩ | ⟨1051 1666] | -0.0736 | 0.0736 | 6.45 |
2.3.5 | [-68 18 17⟩, [-26 -29 31⟩ | ⟨1051 1666 2440] (1051) | +0.0077 | 0.1298 | 11.4 |
2.3.5 | [40 7 -22⟩, [63 -50 7⟩ | ⟨1051 1666 2441] (1051c) | -0.1562 | 0.1313 | 11.5 |