User:Dummy index/Bimetallic MOS
See Metallic MOS. The article is unelegant with the definition of the split operation, so l write it in my own way.
Golden case
You know a process cutting off a square from a golden rectangle. Imagine [math]L = φ[/math] and [math]s = 1[/math] and divide L into
[math]\qquad L_1:s_1 = φ-1:1 = [0; 1, 1, 1, 1, ...][/math].
No, [math]L_1 \lt s_1[/math]. Let new [math]s := L_1[/math] and new [math]L := s_1[/math]. (Rotate the rectangle 90°)
OK, now [math]L = 1[/math] and [math]s = φ-1[/math] and [math]L:s = φ = [1; 1, 1, 1, 1, ...][/math].
Loop.
In thinking MOS pattern, direction of division is altered when every rotation.
L sL LLs (2L 1s) sLsLL (3L 2s) LLsLLsLs (5L 3s) sLsLLsLsLLsLL (8L 5s)
Silver case
First, Imagine [math]L = δ_s[/math] and [math]s = 1[/math] and divide L into
[math]\qquad L_1:s_1 = δ_s-1:1 = [1; 2, 2, 2, 2, ...][/math].
OK, now [math]L_1 = δ_s-1[/math] and [math]s_1 = s = 1[/math]. Next, divide L1 into
[math]\qquad L_2:s_2 = δ_s-2:1 = [0; 2, 2, 2, 2, ...][/math].
No, [math]L_2 \lt s_2[/math]. Let new [math]s := L_2[/math] and new [math]L := s_2[/math]. (Rotate the rectangle 90°)
OK, now [math]L = 1[/math] and [math]s = δ_s-2[/math] and [math]L:s = δ_s = [2; 2, 2, 2, 2, ...][/math].
Loop.
In this case, we actually can choose from two entry points:
- Let L = period and divide L, or
- Let L1 = period and divide L1.
L (first entry point) L s (left: second entry point) sL L ssL sL (from 1st: 2L 3s, from 2nd: 1L 2s) LLLs LLs (from 1st: 5L 2s, from 2nd: 3L 1s) LsLsLss LsLss (from 1st: 5L 7s, from 2nd: 3L 4s)
Bimetallic cases
First, Imagine [math]L = \sqrt{3}+1[/math] and [math]s = 1[/math] and divide L into
[math]\qquad L_1:s_1 = \sqrt{3}:1 = [1; 1, 2, 1, 2, ...][/math].
OK, now [math]L_1 = \sqrt{3}[/math] and [math]s_1 = s = 1[/math]. Next, divide L1 into
[math]\qquad L_2:s_2 = \sqrt{3}-1:1 = [0; 1, 2, 1, 2, ...][/math].
No, [math]L_2 \lt s_2[/math]. Let [math]s_3 := L_2[/math] and [math]L_3 := s_2[/math]. (Rotate the rectangle 90°)
OK, now [math]L_3 = 1[/math] and [math]s_3 = \sqrt{3}-1[/math] and [math]L_3:s_3 = (\sqrt{3}+1) / 2 = [1; 2, 1, 2, 1, ...][/math]. Next, divide L3 into
[math]\qquad L_4:s_4 = (\sqrt{3}-1)/2:1 = [0; 2, 1, 2, 1, ...][/math].
No, [math]L_4 \lt s_4[/math]. Let new [math]s := L_4[/math] and new [math]L := s_4[/math]. (Rotate the rectangle 90°)
OK, now [math]L = \sqrt{3}-1[/math] and [math]s = 2-\sqrt{3}[/math] and [math]L:s = \sqrt{3}+1 = [2; 1, 2, 1, 2, ...][/math].
Loop.
In this case, we actually can choose from three entry points:
- Let L = period and divide L, or
- Let L1 = period and divide L1, or
- Let L3 = period and divide L3.
L (first entry point) L s (left: second entry point) sL L (right: third entry point) LLs Ls (from 1st: 3L 2s, from 2nd: 2L 1s) LsLss Lss (from 1st: 3L 5s, from 2nd: 2L 3s, from 3rd: 1L 2s) sLLsLLL sLLL (from 1st: 8L 3s, from 2nd: 5L 2s, from 3rd: 3L 1s) LLsLsLLsLsLs LLsLsLs (from 2nd: 7L 5s, from 3rd: 4L 3s)
More intense pattern. First, Imagine [math]L = 2\sqrt{2}+2[/math] and [math]s = 1[/math] and divide L into
[math]\qquad L_1:s_1 = 2\sqrt{2}+1:1 = [3; 1, 4, 1, 4, ...][/math].
OK, now [math]L_1 = 2\sqrt{2}+1[/math] and [math]s_1 = s = 1[/math]. Next, divide L1 into
[math]\qquad L_2:s_2 = 2\sqrt{2}:1 = [2; 1, 4, 1, 4, ...][/math].
OK, now [math]L_2 = 2\sqrt{2}[/math] and [math]s_2 = s = 1[/math]. Next, divide L2 into
[math]\qquad L_3:s_3 = 2\sqrt{2}-1:1 = [1; 1, 4, 1, 4, ...][/math].
OK, now [math]L_3 = 2\sqrt{2}-1[/math] and [math]s_3 = s = 1[/math]. Next, divide L3 into
[math]\qquad L_4:s_4 = 2\sqrt{2}-2:1 = [0; 1, 4, 1, 4, ...][/math].
No, [math]L_4 \lt s_4[/math]. Let [math]s_5 := L_4[/math] and [math]L_5 := s_4[/math]. (Rotate the rectangle 90°)
OK, now [math]L_5 = 1[/math] and [math]s_5 = 2\sqrt{2}-2[/math] and [math]L_5:s_5 = (\sqrt{2}+1) / 2 = [1; 4, 1, 4, 1, ...][/math]. Next, divide L5 into
[math]\qquad L_6:s_6 = (\sqrt{2}-1)/2:1 = [0; 4, 1, 4, 1, ...][/math].
No, [math]L_6 \lt s_6[/math]. Let new [math]s := L_6[/math] and new [math]L := s_6[/math]. (Rotate the rectangle 90°)
OK, now [math]L = 2\sqrt{2}-2[/math] and [math]s = 3-2\sqrt{2}[/math] and [math]L:s = 2\sqrt{2}+2 = [4; 1, 4, 1, 4, ...][/math].
Loop.
In this case, we actually can choose from five entry points.
Generator size
Dividing ratio | Generator size | Remarks | |
---|---|---|---|
Golden | [math]L_1:s_1 = φ-1:1[/math] i.e. [math](s:L = 1:φ)[/math] |
g = 458.36 ¢, p = 1200 ¢ | logarithmic phi |
Silver 1st isotope | [math]L_1:s_1 = δ_s-1:1[/math] | g = 702.94 ¢, p = 1200 ¢ | argent fifth |
Silver | [math]L_2:s_2 = δ_s-2:1[/math] i.e. [math](s:L = 1:δ_s)[/math] |
g = 351.47 ¢, p = 1200 ¢ | Imaginary, argent neutral third |
Bimetallic (unnamed A-1) | [math]L_1:s_1 = \sqrt{3}:1[/math] | g = 760.77 ¢, p = 1200 ¢ | |
Bimetallic (unnamed A-2) | [math]L_2:s_2 = \sqrt{3}-1:1[/math] i.e. [math](s_3:L_3 = 1:(\sqrt{3}+1)/2)[/math] |
g = 507.18 ¢, p = 1200 ¢ | Flattone |
Bimetallic (unnamed A-3) | [math]L_4:s_4 = (\sqrt{3}-1)/2:1[/math] i.e. [math](s:L = 1:\sqrt{3}+1)[/math] |
g = 321.54 ¢, p = 1200 ¢ | Superkleismic |
Bimetallic (unnamed B-1) | [math]L_1:s_1 = 2\sqrt{2}+1:1[/math] | g = 951.47 ¢, p = 1200 ¢ | Semaphore |
Bimetallic (unnamed B-2) | [math]L_2:s_2 = 2\sqrt{2}:1[/math] | g = 886.56 ¢, p = 1200 ¢ | Hanson |
Bimetallic (unnamed B-3) | [math]L_3:s_3 = 2\sqrt{2}-1:1[/math] | g = 775.74 ¢, p = 1200 ¢ | Squares |
Bimetallic (unnamed B-4) | [math]L_4:s_4 = 2\sqrt{2}-2:1[/math] i.e. [math](s_5:L_5 = 1:(\sqrt{2}+1)/2)[/math] |
g = 543.70 ¢, p = 1200 ¢ | |
Bimetallic (unnamed B-5) | [math]L_6:s_6 = (\sqrt{2}-1)/2:1[/math] i.e. [math](s:L = 1:2\sqrt{2}+2)[/math] |
g = 205.89 ¢, p = 1200 ¢ |