User:Contribution/327ed7

From Xenharmonic Wiki
Jump to navigation Jump to search
← 326ed7 327ed7 328ed7 →
Prime factorization 3 × 109
Step size 10.3022 ¢ 
Octave 116\327ed7 (1195.06 ¢)
Twelfth 185\327ed7 (1905.91 ¢)
Consistency limit 2
Distinct consistency limit 2

327 equal divisions of the 7th harmonic (abbreviated 327ed7) is a nonoctave tuning system that divides the interval of 7/1 into 327 equal parts of about 10.3 ¢ each. Each step represents a frequency ratio of 71/327, or the 327th root of 7.

Theory

327ed7 is related to 695zpi no-2 no-3 no-5 analogue.

695zpi sets a height record on the Riemann zeta function with primes 2, 3 and 5 removed.

There is no better peak until the 2485zpi no-2 no-3 no-5 analogue, related to 934ed7.

5.50170634367309287643484991017769754899729226704541986574311048539416

  327.005976583980785662359711182151706915324382836632556050595015540

5.6157930141135163017766685402444293609627477857549470376596348292657

  933.950702612953471546210854419427367873650944163629066387540013694

Harmonics

Approximation of harmonics in 327ed7
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Error Absolute (¢) -4.94 +3.96 +0.42 -4.71 -0.99 +0.00 -4.53 -2.39 +0.65 +0.48 +4.37 -0.27 -4.94 -0.76 +0.83
Relative (%) -48.0 +38.4 +4.0 -45.8 -9.6 +0.0 -43.9 -23.2 +6.3 +4.6 +42.4 -2.6 -48.0 -7.4 +8.1
Steps 116 185 233 270 301 327 349 369 387 403 418 431 443 455 466
Approximation of harmonics in 327ed7
Harmonic 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Error Absolute (¢) -1.10 +2.97 +2.09 -4.30 +3.96 -4.47 +1.00 -0.57 +0.87 +5.09 +1.56 +0.42 +1.48 +4.60 -0.65 -4.11
Relative (%) -10.7 +28.8 +20.2 -41.7 +38.4 -43.3 +9.7 -5.5 +8.5 +49.4 +15.2 +4.0 +14.4 +44.7 -6.4 -39.9
Steps 476 486 495 503 512 519 527 534 541 548 554 560 566 572 577 582
Approximation of harmonics in 327ed7
Harmonic 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Error Absolute (¢) +4.43 +4.26 -4.71 -1.97 +2.10 -2.86 +3.68 +1.06 -0.48 -0.99 -0.51 +0.89 +3.20 -3.95 +0.03 +4.79
Relative (%) +43.0 +41.4 -45.8 -19.2 +20.4 -27.7 +35.8 +10.3 -4.6 -9.6 -5.0 +8.7 +31.0 -38.3 +0.3 +46.5
Steps 588 593 597 602 607 611 616 620 624 628 632 636 640 643 647 651
Approximation of harmonics in 327ed7
Harmonic 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Error Absolute (¢) +0.00 -4.07 +2.86 +0.15 -1.92 -3.38 -4.24 -4.53 -4.26 -3.46 -2.15 -0.34 +1.95 +4.71 -2.39 +1.25
Relative (%) +0.0 -39.5 +27.7 +1.4 -18.7 -32.8 -41.1 -43.9 -41.4 -33.6 -20.9 -3.3 +18.9 +45.7 -23.2 +12.1
Steps 654 657 661 664 667 670 673 676 679 682 685 688 691 694 696 699

In 327ed7, the following harmonics are pretty good (less than 1.1 cent error): 1, 4, 6, 7, 10, 11, 13, 15, 16, 17, 23, 24, 25, 28, 31, 40, 41, 42, 43, 44, 47, 49, 52, 60, 66, 68, 70, 73, 77, 91, 96, 105, 112, 114, 119, 121, 124, 127, 130, 134, 138, 143, 150, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 187, 188, 195, 196, 202, 208, 213, 217, 233, 240, 243

Riemann zeta

327ed7 has an exceptionally strong no-2 no-3 no-5 zeta peak.