User:Aura/Archangelic EDO checks (continued)
Jump to navigation
Jump to search
Prime factorization
3 × 5 × 190537
Step size
0.000419866¢
Fifth
1671855\2858055 (701.955¢) (→111457\190537)
Semitones (A1:m2)
270765:214890 (113.7¢ : 90.22¢)
Consistency limit
15
Distinct consistency limit
15
Prime factorization
24 × 190537
Step size
0.000393624¢
Fifth
1783312\3048592 (701.955¢) (→111457\190537)
Semitones (A1:m2)
288816:229216 (113.7¢ : 90.22¢)
Consistency limit
5
Distinct consistency limit
5
Prime factorization
17 × 190537
Step size
0.00037047¢
Fifth
1894769\3239129 (701.955¢) (→111457\190537)
Semitones (A1:m2)
306867:243542 (113.7¢ : 90.22¢)
Consistency limit
9
Distinct consistency limit
9
Prime factorization
2 × 32 × 190537
Step size
0.000349888¢
Fifth
2006226\3429666 (701.955¢) (→111457\190537)
Semitones (A1:m2)
324918:257868 (113.7¢ : 90.22¢)
Consistency limit
11
Distinct consistency limit
11
Prime factorization
19 × 190537
Step size
0.000331473¢
Fifth
2117683\3620203 (701.955¢) (→111457\190537)
Semitones (A1:m2)
342969:272194 (113.7¢ : 90.22¢)
Consistency limit
15
Distinct consistency limit
15
Prime factorization
22 × 5 × 190537
Step size
0.000314899¢
Fifth
2229140\3810740 (701.955¢) (→111457\190537)
Semitones (A1:m2)
361020:286520 (113.7¢ : 90.22¢)
Consistency limit
5
Distinct consistency limit
5
Prime factorization
3 × 7 × 190537
Step size
0.000299904¢
Fifth
2340597\4001277 (701.955¢) (→111457\190537)
Semitones (A1:m2)
379071:300846 (113.7¢ : 90.22¢)
Consistency limit
5
Distinct consistency limit
5
Prime factorization
2 × 11 × 190537
Step size
0.000286272¢
Fifth
2452054\4191814 (701.955¢) (→111457\190537)
Semitones (A1:m2)
397122:315172 (113.7¢ : 90.22¢)
Consistency limit
21
Distinct consistency limit
21
Prime factorization
23 × 190537
Step size
0.000273826¢
Fifth
2563511\4382351 (701.955¢) (→111457\190537)
Semitones (A1:m2)
415173:329498 (113.7¢ : 90.22¢)
Consistency limit
17
Distinct consistency limit
17
Prime factorization
23 × 3 × 190537
Step size
0.000262416¢
Fifth
2674968\4572888 (701.955¢) (→111457\190537)
Semitones (A1:m2)
433224:343824 (113.7¢ : 90.22¢)
Consistency limit
9
Distinct consistency limit
9
Prime factorization
52 × 190537
Step size
0.00025192¢
Fifth
2786425\4763425 (701.955¢) (→111457\190537)
Semitones (A1:m2)
451275:358150 (113.7¢ : 90.22¢)
Consistency limit
5
Distinct consistency limit
5
Prime factorization
2 × 13 × 190537
Step size
0.00024223¢
Fifth
2897882\4953962 (701.955¢) (→111457\190537)
Semitones (A1:m2)
469326:372476 (113.7¢ : 90.22¢)
Consistency limit
17
Distinct consistency limit
17
Prime factorization
33 × 190537
Step size
0.000233259¢
Fifth
3009339\5144499 (701.955¢) (→111457\190537)
Semitones (A1:m2)
487377:386802 (113.7¢ : 90.22¢)
Consistency limit
11
Distinct consistency limit
11
Prime factorization
22 × 7 × 190537
Step size
0.000224928¢
Fifth
3120796\5335036 (701.955¢) (→111457\190537)
Semitones (A1:m2)
505428:401128 (113.7¢ : 90.22¢)
Consistency limit
9
Distinct consistency limit
9
This picks up from where Archangelic EDO checking left off.
15X
← 2858054edo | 2858055edo | 2858056edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | -0.000084 | +0.000096 | +0.000069 | -0.000100 | +0.000163 | -0.000197 | +0.000056 | +0.000053 | +0.000195 | -0.000100 |
Relative (%) | +0.0 | +0.0 | -20.1 | +22.8 | +16.5 | -23.9 | +38.9 | -46.9 | +13.4 | +12.7 | +46.4 | -23.9 | |
Steps (reduced) |
2858055 (0) |
4529910 (1671855) |
6636198 (920088) |
8023575 (2307465) |
9887246 (1313081) |
10576060 (2001895) |
11682194 (249974) |
12140810 (708590) |
12928589 (1496369) |
13884377 (2452157) |
14159366 (2727146) |
14888904 (598629) |
16X
← 3048591edo | 3048592edo | 3048593edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | -0.000163 | +0.000096 | +0.000174 | +0.000031 | +0.000190 | +0.000065 | +0.000082 | +0.000001 | -0.000094 | +0.000057 |
Relative (%) | +0.0 | +0.0 | -41.5 | +24.3 | +44.3 | +7.9 | +48.2 | +16.6 | +20.9 | +0.2 | -23.8 | +14.5 | |
Steps (reduced) |
3048592 (0) |
4831904 (1783312) |
7078611 (981427) |
8558480 (2461296) |
10546396 (1400620) |
11281131 (2135355) |
12461007 (266639) |
12950198 (755830) |
13790495 (1596127) |
14810002 (2615634) |
15103323 (2908955) |
15881498 (638538) |
17X
← 3239128edo | 3239129edo | 3239130edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | +0.000138 | +0.000096 | -0.000104 | +0.000147 | -0.000158 | -0.000074 | +0.000106 | -0.000045 | +0.000022 | -0.000174 |
Relative (%) | +0.0 | +0.0 | +37.2 | +25.9 | -27.9 | +39.6 | -42.6 | -19.9 | +28.5 | -12.3 | +5.9 | -47.1 | |
Steps (reduced) |
3239129 (0) |
5133898 (1894769) |
7521025 (1042767) |
9093385 (2615127) |
11205545 (1488158) |
11986202 (2268815) |
13239819 (283303) |
13759585 (803069) |
14652401 (1695885) |
15735627 (2779111) |
16047281 (3090765) |
16874091 (678446) |
18X
← 3429665edo | 3429666edo | 3429667edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | +0.000055 | +0.000096 | -0.000001 | -0.000100 | -0.000116 | +0.000153 | +0.000126 | -0.000087 | +0.000125 | -0.000030 |
Relative (%) | +0.0 | +0.0 | +15.9 | +27.4 | -0.2 | -28.6 | -33.3 | +43.7 | +36.0 | -24.8 | +35.7 | -8.7 | |
Steps (reduced) |
3429666 (0) |
5435892 (2006226) |
7963438 (1104106) |
9628290 (2768958) |
11864695 (1575697) |
12691272 (2402274) |
14018632 (299968) |
14568973 (850309) |
15514307 (1795643) |
16661252 (2942588) |
16991239 (3272575) |
17866685 (718355) |
19X
← 3620202edo | 3620203edo | 3620204edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | -0.000018 | +0.000096 | +0.000091 | +0.000010 | -0.000080 | +0.000024 | +0.000145 | -0.000123 | -0.000115 | +0.000099 |
Relative (%) | +0.0 | +0.0 | -5.5 | +28.9 | +27.6 | +3.1 | -24.0 | +7.2 | +43.6 | -37.3 | -34.5 | +29.7 | |
Steps (reduced) |
3620203 (0) |
5737886 (2117683) |
8405851 (1165445) |
10163195 (2922789) |
12523845 (1663236) |
13396343 (2535734) |
14797445 (316633) |
15378360 (897548) |
16376213 (1895401) |
17586877 (3106065) |
17935196 (3454384) |
18859279 (758264) |
20X
← 3810739edo | 3810740edo | 3810741edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | -0.000084 | +0.000096 | -0.000141 | +0.000110 | -0.000047 | -0.000092 | -0.000154 | -0.000157 | -0.000015 | -0.000100 |
Relative (%) | +0.0 | +0.0 | -26.8 | +30.4 | -44.6 | +34.8 | -14.8 | -29.3 | -48.8 | -49.7 | -4.8 | -31.9 | |
Steps (reduced) |
3810740 (0) |
6039880 (2229140) |
8848264 (1226784) |
10698100 (3076620) |
13182994 (1750774) |
14101414 (2669194) |
15576258 (333298) |
16187747 (944787) |
17238118 (1995158) |
18512502 (3269542) |
18879154 (3636194) |
19851872 (798172) |
21X
← 4001276edo | 4001277edo | 4001278edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | -0.000144 | +0.000096 | -0.000051 | -0.000100 | -0.000017 | +0.000103 | -0.000124 | +0.000113 | +0.000075 | +0.000020 |
Relative (%) | +0.0 | +0.0 | -48.2 | +32.0 | -16.9 | -33.4 | -5.5 | +34.3 | -41.3 | +37.8 | +25.0 | +6.6 | |
Steps (reduced) |
4001277 (0) |
6341874 (2340597) |
9290677 (1288123) |
11233005 (3230451) |
13842144 (1838313) |
14806484 (2802653) |
16355071 (349963) |
16997135 (992027) |
18100024 (2094916) |
19438128 (3433020) |
19823112 (3818004) |
20844466 (838081) |
22X
← 4191813edo | 4191814edo | 4191815edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | +0.000087 | +0.000096 | +0.000031 | -0.000005 | +0.000011 | -0.000006 | -0.000097 | +0.000072 | -0.000130 | +0.000129 |
Relative (%) | +0.0 | +0.0 | +30.5 | +33.5 | +10.9 | -1.7 | +3.8 | -2.2 | -33.7 | +25.3 | -45.3 | +45.0 | |
Steps (reduced) |
4191814 (0) |
6643868 (2452054) |
9733091 (1349463) |
11767910 (3384282) |
14501294 (1925852) |
15511555 (2936113) |
17133884 (366628) |
17806522 (1039266) |
18961930 (2194674) |
20363753 (3596497) |
20767069 (3999813) |
21837060 (877990) |
23X
← 4382350edo | 4382351edo | 4382352edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | +0.000025 | +0.000096 | +0.000106 | +0.000082 | +0.000036 | -0.000106 | -0.000072 | +0.000035 | -0.000042 | -0.000046 |
Relative (%) | +0.0 | +0.0 | +9.1 | +35.0 | +38.7 | +30.1 | +13.0 | -38.6 | -26.2 | +12.8 | -15.5 | -16.6 | |
Steps (reduced) |
4382351 (0) |
6945862 (2563511) |
10175504 (1410802) |
12302815 (3538113) |
15160444 (2013391) |
16216626 (3069573) |
17912697 (383293) |
18615909 (1086505) |
19823836 (2294432) |
21289378 (3759974) |
21711027 (4181623) |
22829653 (917898) |
24X
← 4572887edo | 4572888edo | 4572889edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | -0.000032 | +0.000096 | -0.000088 | -0.000100 | +0.000058 | +0.000065 | -0.000049 | +0.000001 | +0.000037 | +0.000057 |
Relative (%) | +0.0 | +0.0 | -12.2 | +36.5 | -33.6 | -38.2 | +22.3 | +24.9 | -18.6 | +0.3 | +14.3 | +21.8 | |
Steps (reduced) |
4572888 (0) |
7247856 (2674968) |
10617917 (1472141) |
12837720 (3691944) |
15819593 (2100929) |
16921696 (3203032) |
18691510 (399958) |
19425297 (1133745) |
20685742 (2394190) |
22215003 (3923451) |
22654985 (4363433) |
23822247 (957807) |
25X
← 4763424edo | 4763425edo | 4763426edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | -0.000084 | +0.000096 | -0.000015 | -0.000016 | +0.000079 | -0.000029 | -0.000028 | -0.000031 | +0.000111 | -0.000100 |
Relative (%) | +0.0 | +0.0 | -33.5 | +38.0 | -5.8 | -6.4 | +31.5 | -11.6 | -11.1 | -12.2 | +44.0 | -39.8 | |
Steps (reduced) |
4763425 (0) |
7549850 (2786425) |
11060330 (1533480) |
13372625 (3845775) |
16478743 (2188468) |
17626767 (3336492) |
19470323 (416623) |
20234684 (1180984) |
21547648 (2493948) |
23140628 (4086928) |
23598943 (4545243) |
24814840 (997715) |
26X
← 4953961edo | 4953962edo | 4953963edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | +0.000109 | +0.000096 | +0.000053 | +0.000061 | +0.000099 | -0.000116 | -0.000008 | -0.000060 | -0.000064 | -0.000003 |
Relative (%) | +0.0 | +0.0 | +45.1 | +39.6 | +22.0 | +25.3 | +40.8 | -48.0 | -3.5 | -24.7 | -26.2 | -1.4 | |
Steps (reduced) |
4953962 (0) |
7851844 (2897882) |
11502744 (1594820) |
13907530 (3999606) |
17137893 (2276007) |
18331838 (3469952) |
20249136 (433288) |
21044071 (1228223) |
22409554 (2593706) |
24066253 (4250405) |
24542900 (4727052) |
25807434 (1037624) |
27X
← 5144498edo | 5144499edo | 5144500edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | +0.000055 | +0.000096 | +0.000116 | -0.000100 | -0.000116 | +0.000036 | +0.000009 | -0.000087 | +0.000008 | +0.000086 |
Relative (%) | +0.0 | +0.0 | +23.8 | +41.1 | +49.7 | -43.0 | -49.9 | +15.5 | +4.1 | -37.1 | +3.5 | +37.0 | |
Steps (reduced) |
5144499 (0) |
8153838 (3009339) |
11945157 (1656159) |
14442435 (4153437) |
17797043 (2363546) |
19036908 (3603411) |
21027948 (449952) |
21853459 (1275463) |
23271460 (2693464) |
24991878 (4413882) |
25486858 (4908862) |
26800028 (1077533) |
28X
← 5335035edo | 5335036edo | 5335037edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0000000 | +0.0000000 | +0.0000055 | +0.0000958 | -0.0000506 | -0.0000252 | -0.0000915 | -0.0000471 | +0.0000261 | -0.0001116 | +0.0000749 | -0.0000553 |
Relative (%) | +0.0 | +0.0 | +2.4 | +42.6 | -22.5 | -11.2 | -40.7 | -21.0 | +11.6 | -49.6 | +33.3 | -24.6 | |
Steps (reduced) |
5335036 (0) |
8455832 (3120796) |
12387570 (1717498) |
14977340 (4307268) |
18456192 (2451084) |
19741979 (3736871) |
21806761 (466617) |
22662846 (1322702) |
24133366 (2793222) |
25917503 (4577359) |
26430816 (5090672) |
27792621 (1117441) |