# User:Aura/Archangelic EDO checks (continued)

This picks up from where Archangelic EDO checking left off.

## 15X

 ← 2858054edo 2858055edo 2858056edo →
Prime factorization 3 × 5 × 190537
Step size 0.000419866¢
Fifth 1671855\2858055 (701.955¢) (→111457\190537)
Semitones (A1:m2) 270765:214890 (113.7¢ : 90.22¢)
Consistency limit 15
Distinct consistency limit 15
Approximation of prime harmonics in 2858055edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error absolute (¢) +0.000000 +0.000000 -0.000084 +0.000096 +0.000069 -0.000100 +0.000163 -0.000197 +0.000056 +0.000053 +0.000195 -0.000100
relative (%) +0 +0 -20 +23 +17 -24 +39 -47 +13 +13 +46 -24
Steps
(reduced)
2858055
(0)
4529910
(1671855)
6636198
(920088)
8023575
(2307465)
9887246
(1313081)
10576060
(2001895)
11682194
(249974)
12140810
(708590)
12928589
(1496369)
13884377
(2452157)
14159366
(2727146)
14888904
(598629)

## 16X

 ← 3048591edo 3048592edo 3048593edo →
Prime factorization 24 × 190537
Step size 0.000393624¢
Fifth 1783312\3048592 (701.955¢) (→111457\190537)
Semitones (A1:m2) 288816:229216 (113.7¢ : 90.22¢)
Consistency limit 5
Distinct consistency limit 5
Approximation of prime harmonics in 3048592edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error absolute (¢) +0.000000 +0.000000 -0.000163 +0.000096 +0.000174 +0.000031 +0.000190 +0.000065 +0.000082 +0.000001 -0.000094 +0.000057
relative (%) +0 +0 -41 +24 +44 +8 +48 +17 +21 +0 -24 +15
Steps
(reduced)
3048592
(0)
4831904
(1783312)
7078611
(981427)
8558480
(2461296)
10546396
(1400620)
11281131
(2135355)
12461007
(266639)
12950198
(755830)
13790495
(1596127)
14810002
(2615634)
15103323
(2908955)
15881498
(638538)

## 17X

 ← 3239128edo 3239129edo 3239130edo →
Prime factorization 17 × 190537
Step size 0.00037047¢
Fifth 1894769\3239129 (701.955¢) (→111457\190537)
Semitones (A1:m2) 306867:243542 (113.7¢ : 90.22¢)
Consistency limit 9
Distinct consistency limit 9
Approximation of prime harmonics in 3239129edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error absolute (¢) +0.000000 +0.000000 +0.000138 +0.000096 -0.000104 +0.000147 -0.000158 -0.000074 +0.000106 -0.000045 +0.000022 -0.000174
relative (%) +0 +0 +37 +26 -28 +40 -43 -20 +28 -12 +6 -47
Steps
(reduced)
3239129
(0)
5133898
(1894769)
7521025
(1042767)
9093385
(2615127)
11205545
(1488158)
11986202
(2268815)
13239819
(283303)
13759585
(803069)
14652401
(1695885)
15735627
(2779111)
16047281
(3090765)
16874091
(678446)

## 18X

 ← 3429665edo 3429666edo 3429667edo →
Prime factorization 2 × 32 × 190537
Step size 0.000349888¢
Fifth 2006226\3429666 (701.955¢) (→111457\190537)
Semitones (A1:m2) 324918:257868 (113.7¢ : 90.22¢)
Consistency limit 11
Distinct consistency limit 11
Approximation of prime harmonics in 3429666edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error absolute (¢) +0.000000 +0.000000 +0.000055 +0.000096 -0.000001 -0.000100 -0.000116 +0.000153 +0.000126 -0.000087 +0.000125 -0.000030
relative (%) +0 +0 +16 +27 -0 -29 -33 +44 +36 -25 +36 -9
Steps
(reduced)
3429666
(0)
5435892
(2006226)
7963438
(1104106)
9628290
(2768958)
11864695
(1575697)
12691272
(2402274)
14018632
(299968)
14568973
(850309)
15514307
(1795643)
16661252
(2942588)
16991239
(3272575)
17866685
(718355)

## 19X

 ← 3620202edo 3620203edo 3620204edo →
Prime factorization 19 × 190537
Step size 0.000331473¢
Fifth 2117683\3620203 (701.955¢) (→111457\190537)
Semitones (A1:m2) 342969:272194 (113.7¢ : 90.22¢)
Consistency limit 15
Distinct consistency limit 15
Approximation of prime harmonics in 3620203edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error absolute (¢) +0.000000 +0.000000 -0.000018 +0.000096 +0.000091 +0.000010 -0.000080 +0.000024 +0.000145 -0.000123 -0.000115 +0.000099
relative (%) +0 +0 -5 +29 +28 +3 -24 +7 +44 -37 -35 +30
Steps
(reduced)
3620203
(0)
5737886
(2117683)
8405851
(1165445)
10163195
(2922789)
12523845
(1663236)
13396343
(2535734)
14797445
(316633)
15378360
(897548)
16376213
(1895401)
17586877
(3106065)
17935196
(3454384)
18859279
(758264)

## 20X

 ← 3810739edo 3810740edo 3810741edo →
Prime factorization 22 × 5 × 190537
Step size 0.000314899¢
Fifth 2229140\3810740 (701.955¢) (→111457\190537)
Semitones (A1:m2) 361020:286520 (113.7¢ : 90.22¢)
Consistency limit 5
Distinct consistency limit 5
Approximation of prime harmonics in 3810740edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error absolute (¢) +0.000000 +0.000000 -0.000084 +0.000096 -0.000141 +0.000110 -0.000047 -0.000092 -0.000154 -0.000157 -0.000015 -0.000100
relative (%) +0 +0 -27 +30 -45 +35 -15 -29 -49 -50 -5 -32
Steps
(reduced)
3810740
(0)
6039880
(2229140)
8848264
(1226784)
10698100
(3076620)
13182994
(1750774)
14101414
(2669194)
15576258
(333298)
16187747
(944787)
17238118
(1995158)
18512502
(3269542)
18879154
(3636194)
19851872
(798172)

## 21X

 ← 4001276edo 4001277edo 4001278edo →
Prime factorization 3 × 7 × 190537
Step size 0.000299904¢
Fifth 2340597\4001277 (701.955¢) (→111457\190537)
Semitones (A1:m2) 379071:300846 (113.7¢ : 90.22¢)
Consistency limit 5
Distinct consistency limit 5
Approximation of prime harmonics in 4001277edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error absolute (¢) +0.000000 +0.000000 -0.000144 +0.000096 -0.000051 -0.000100 -0.000017 +0.000103 -0.000124 +0.000113 +0.000075 +0.000020
relative (%) +0 +0 -48 +32 -17 -33 -6 +34 -41 +38 +25 +7
Steps
(reduced)
4001277
(0)
6341874
(2340597)
9290677
(1288123)
11233005
(3230451)
13842144
(1838313)
14806484
(2802653)
16355071
(349963)
16997135
(992027)
18100024
(2094916)
19438128
(3433020)
19823112
(3818004)
20844466
(838081)

## 22X

 ← 4191813edo 4191814edo 4191815edo →
Prime factorization 2 × 11 × 190537
Step size 0.000286272¢
Fifth 2452054\4191814 (701.955¢) (→111457\190537)
Semitones (A1:m2) 397122:315172 (113.7¢ : 90.22¢)
Consistency limit 21
Distinct consistency limit 21
Approximation of prime harmonics in 4191814edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error absolute (¢) +0.000000 +0.000000 +0.000087 +0.000096 +0.000031 -0.000005 +0.000011 -0.000006 -0.000097 +0.000072 -0.000130 +0.000129
relative (%) +0 +0 +30 +33 +11 -2 +4 -2 -34 +25 -45 +45
Steps
(reduced)
4191814
(0)
6643868
(2452054)
9733091
(1349463)
11767910
(3384282)
14501294
(1925852)
15511555
(2936113)
17133884
(366628)
17806522
(1039266)
18961930
(2194674)
20363753
(3596497)
20767069
(3999813)
21837060
(877990)

## 23X

 ← 4382350edo 4382351edo 4382352edo →
Prime factorization 23 × 190537
Step size 0.000273826¢
Fifth 2563511\4382351 (701.955¢) (→111457\190537)
Semitones (A1:m2) 415173:329498 (113.7¢ : 90.22¢)
Consistency limit 17
Distinct consistency limit 17
Approximation of prime harmonics in 4382351edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error absolute (¢) +0.000000 +0.000000 +0.000025 +0.000096 +0.000106 +0.000082 +0.000036 -0.000106 -0.000072 +0.000035 -0.000042 -0.000046
relative (%) +0 +0 +9 +35 +39 +30 +13 -39 -26 +13 -16 -17
Steps
(reduced)
4382351
(0)
6945862
(2563511)
10175504
(1410802)
12302815
(3538113)
15160444
(2013391)
16216626
(3069573)
17912697
(383293)
18615909
(1086505)
19823836
(2294432)
21289378
(3759974)
21711027
(4181623)
22829653
(917898)

## 24X

 ← 4572887edo 4572888edo 4572889edo →
Prime factorization 23 × 3 × 190537
Step size 0.000262416¢
Fifth 2674968\4572888 (701.955¢) (→111457\190537)
Semitones (A1:m2) 433224:343824 (113.7¢ : 90.22¢)
Consistency limit 9
Distinct consistency limit 9
Approximation of prime harmonics in 4572888edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error absolute (¢) +0.000000 +0.000000 -0.000032 +0.000096 -0.000088 -0.000100 +0.000058 +0.000065 -0.000049 +0.000001 +0.000037 +0.000057
relative (%) +0 +0 -12 +37 -34 -38 +22 +25 -19 +0 +14 +22
Steps
(reduced)
4572888
(0)
7247856
(2674968)
10617917
(1472141)
12837720
(3691944)
15819593
(2100929)
16921696
(3203032)
18691510
(399958)
19425297
(1133745)
20685742
(2394190)
22215003
(3923451)
22654985
(4363433)
23822247
(957807)

## 25X

 ← 4763424edo 4763425edo 4763426edo →
Prime factorization 52 × 190537
Step size 0.00025192¢
Fifth 2786425\4763425 (701.955¢) (→111457\190537)
Semitones (A1:m2) 451275:358150 (113.7¢ : 90.22¢)
Consistency limit 5
Distinct consistency limit 5
Approximation of prime harmonics in 4763425edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error absolute (¢) +0.000000 +0.000000 -0.000084 +0.000096 -0.000015 -0.000016 +0.000079 -0.000029 -0.000028 -0.000031 +0.000111 -0.000100
relative (%) +0 +0 -34 +38 -6 -6 +32 -12 -11 -12 +44 -40
Steps
(reduced)
4763425
(0)
7549850
(2786425)
11060330
(1533480)
13372625
(3845775)
16478743
(2188468)
17626767
(3336492)
19470323
(416623)
20234684
(1180984)
21547648
(2493948)
23140628
(4086928)
23598943
(4545243)
24814840
(997715)

## 26X

 ← 4953961edo 4953962edo 4953963edo →
Prime factorization 2 × 13 × 190537
Step size 0.00024223¢
Fifth 2897882\4953962 (701.955¢) (→111457\190537)
Semitones (A1:m2) 469326:372476 (113.7¢ : 90.22¢)
Consistency limit 17
Distinct consistency limit 17
Approximation of prime harmonics in 4953962edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error absolute (¢) +0.000000 +0.000000 +0.000109 +0.000096 +0.000053 +0.000061 +0.000099 -0.000116 -0.000008 -0.000060 -0.000064 -0.000003
relative (%) +0 +0 +45 +40 +22 +25 +41 -48 -3 -25 -26 -1
Steps
(reduced)
4953962
(0)
7851844
(2897882)
11502744
(1594820)
13907530
(3999606)
17137893
(2276007)
18331838
(3469952)
20249136
(433288)
21044071
(1228223)
22409554
(2593706)
24066253
(4250405)
24542900
(4727052)
25807434
(1037624)

## 27X

 ← 5144498edo 5144499edo 5144500edo →
Prime factorization 33 × 190537
Step size 0.000233259¢
Fifth 3009339\5144499 (701.955¢) (→111457\190537)
Semitones (A1:m2) 487377:386802 (113.7¢ : 90.22¢)
Consistency limit 11
Distinct consistency limit 11
Approximation of prime harmonics in 5144499edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error absolute (¢) +0.000000 +0.000000 +0.000055 +0.000096 +0.000116 -0.000100 -0.000116 +0.000036 +0.000009 -0.000087 +0.000008 +0.000086
relative (%) +0 +0 +24 +41 +50 -43 -50 +16 +4 -37 +4 +37
Steps
(reduced)
5144499
(0)
8153838
(3009339)
11945157
(1656159)
14442435
(4153437)
17797043
(2363546)
19036908
(3603411)
21027948
(449952)
21853459
(1275463)
23271460
(2693464)
24991878
(4413882)
25486858
(4908862)
26800028
(1077533)

## 28X

 ← 5335035edo 5335036edo 5335037edo →
Prime factorization 22 × 7 × 190537
Step size 0.000224928¢
Fifth 3120796\5335036 (701.955¢) (→111457\190537)
Semitones (A1:m2) 505428:401128 (113.7¢ : 90.22¢)
Consistency limit 9
Distinct consistency limit 9
Approximation of prime harmonics in 5335036edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error absolute (¢) +0.0000000 +0.0000000 +0.0000055 +0.0000958 -0.0000506 -0.0000252 -0.0000915 -0.0000471 +0.0000261 -0.0001116 +0.0000749 -0.0000553
relative (%) +0 +0 +2 +43 -22 -11 -41 -21 +12 -50 +33 -25
Steps
(reduced)
5335036
(0)
8455832
(3120796)
12387570
(1717498)
14977340
(4307268)
18456192
(2451084)
19741979
(3736871)
21806761
(466617)
22662846
(1322702)
24133366
(2793222)
25917503
(4577359)
26430816
(5090672)
27792621
(1117441)