User:Aura/Archangelic EDO checks
Jump to navigation
Jump to search
Prime factorization
190537 (prime)
Step size
0.00629799¢
Fifth
111457\190537 (701.955¢)
(convergent)
Semitones (A1:m2)
18051:14326 (113.7¢ : 90.22¢)
Consistency limit
11
Distinct consistency limit
11
Prime factorization
2 × 190537
Step size
0.00314899¢
Fifth
222914\381074 (701.955¢) (→111457\190537)
Semitones (A1:m2)
36102:28652 (113.7¢ : 90.22¢)
Consistency limit
15
Distinct consistency limit
15
Prime factorization
3 × 190537
Step size
0.00209933¢
Fifth
334371\571611 (701.955¢) (→111457\190537)
Semitones (A1:m2)
54153:42978 (113.7¢ : 90.22¢)
Consistency limit
9
Distinct consistency limit
9
Prime factorization
22 × 190537
Step size
0.0015745¢
Fifth
445828\762148 (701.955¢) (→111457\190537)
Semitones (A1:m2)
72204:57304 (113.7¢ : 90.22¢)
Consistency limit
17
Distinct consistency limit
17
Prime factorization
5 × 190537
Step size
0.0012596¢
Fifth
557285\952685 (701.955¢) (→111457\190537)
Semitones (A1:m2)
90255:71630 (113.7¢ : 90.22¢)
Consistency limit
11
Distinct consistency limit
11
Prime factorization
2 × 3 × 190537
Step size
0.00104966¢
Fifth
668742\1143222 (701.955¢) (→111457\190537)
Semitones (A1:m2)
108306:85956 (113.7¢ : 90.22¢)
Consistency limit
15
Distinct consistency limit
15
Prime factorization
7 × 190537
Step size
0.000899713¢
Fifth
780199\1333759 (701.955¢) (→111457\190537)
Semitones (A1:m2)
126357:100282 (113.7¢ : 90.22¢)
Consistency limit
5
Distinct consistency limit
5
Prime factorization
23 × 190537
Step size
0.000787249¢
Fifth
891656\1524296 (701.955¢) (→111457\190537)
Semitones (A1:m2)
144408:114608 (113.7¢ : 90.22¢)
Consistency limit
11
Distinct consistency limit
11
Prime factorization
32 × 190537
Step size
0.000699777¢
Fifth
1003113\1714833 (701.955¢) (→111457\190537)
Semitones (A1:m2)
162459:128934 (113.7¢ : 90.22¢)
Consistency limit
11
Distinct consistency limit
11
Prime factorization
2 × 5 × 190537
Step size
0.000629799¢
Fifth
1114570\1905370 (701.955¢) (→111457\190537)
Semitones (A1:m2)
180510:143260 (113.7¢ : 90.22¢)
Consistency limit
17
Distinct consistency limit
17
Prime factorization
11 × 190537
Step size
0.000572544¢
Fifth
1226027\2095907 (701.955¢) (→111457\190537)
Semitones (A1:m2)
198561:157586 (113.7¢ : 90.22¢)
Consistency limit
5
Distinct consistency limit
5
Prime factorization
22 × 3 × 190537
Step size
0.000524832¢
Fifth
1337484\2286444 (701.955¢) (→111457\190537)
Semitones (A1:m2)
216612:171912 (113.7¢ : 90.22¢)
Consistency limit
11
Distinct consistency limit
11
Prime factorization
13 × 190537
Step size
0.000484461¢
Fifth
1448941\2476981 (701.955¢) (→111457\190537)
Semitones (A1:m2)
234663:186238 (113.7¢ : 90.22¢)
Consistency limit
9
Distinct consistency limit
9
Prime factorization
2 × 7 × 190537
Step size
0.000449856¢
Fifth
1560398\2667518 (701.955¢) (→111457\190537)
Semitones (A1:m2)
252714:200564 (113.7¢ : 90.22¢)
Consistency limit
11
Distinct consistency limit
11
This page is dedicated to collecting data on EDOs tempering out the Archangelic comma. For continuation, see here.
1X
← 190536edo | 190537edo | 190538edo → |
(convergent)
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00000 | +0.00000 | -0.00134 | +0.00010 | +0.00175 | +0.00200 | +0.00058 | -0.00230 | +0.00048 | -0.00079 | +0.00187 | +0.00242 |
Relative (%) | +0.0 | +0.0 | -21.3 | +1.5 | +27.8 | +31.7 | +9.3 | -36.5 | +7.6 | -12.5 | +29.8 | +38.4 | |
Steps (reduced) |
190537 (0) |
301994 (111457) |
442413 (61339) |
534905 (153831) |
659150 (87539) |
705071 (133460) |
778813 (16665) |
809387 (47239) |
861906 (99758) |
925625 (163477) |
943958 (181810) |
992594 (39909) |
2X
← 381073edo | 381074edo | 381075edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00000 | +0.00000 | -0.00134 | +0.00010 | -0.00140 | -0.00115 | +0.00058 | +0.00085 | +0.00048 | -0.00079 | -0.00127 | -0.00073 |
Relative (%) | +0.0 | +0.0 | -42.7 | +3.0 | -44.5 | -36.5 | +18.5 | +27.1 | +15.1 | -25.0 | -40.5 | -23.2 | |
Steps (reduced) |
381074 (0) |
603988 (222914) |
884826 (122678) |
1069810 (307662) |
1318299 (175077) |
1410141 (266919) |
1557626 (33330) |
1618775 (94479) |
1723812 (199516) |
1851250 (326954) |
1887915 (363619) |
1985187 (79817) |
3X
← 571610edo | 571611edo | 571612edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | +0.000755 | +0.000096 | -0.000351 | -0.000100 | +0.000583 | -0.000197 | +0.000476 | -0.000786 | -0.000225 | +0.000320 |
Relative (%) | +0.0 | +0.0 | +36.0 | +4.6 | -16.7 | -4.8 | +27.8 | -9.4 | +22.7 | -37.5 | -10.7 | +15.2 | |
Steps (reduced) |
571611 (0) |
905982 (334371) |
1327240 (184018) |
1604715 (461493) |
1977449 (262616) |
2115212 (400379) |
2336439 (49995) |
2428162 (141718) |
2585718 (299274) |
2776875 (490431) |
2831873 (545429) |
2977781 (119726) |
4X
← 762147edo | 762148edo | 762149edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | +0.000230 | +0.000096 | +0.000174 | +0.000425 | +0.000583 | -0.000722 | +0.000476 | -0.000786 | +0.000300 | -0.000730 |
Relative (%) | +0.0 | +0.0 | +14.6 | +6.1 | +11.1 | +27.0 | +37.0 | -45.9 | +30.2 | -49.9 | +19.0 | -46.4 | |
Steps (reduced) |
762148 (0) |
1207976 (445828) |
1769653 (245357) |
2139620 (615324) |
2636599 (350155) |
2820283 (533839) |
3115252 (66660) |
3237549 (188957) |
3447624 (399032) |
3702500 (653908) |
3775831 (727239) |
3970374 (159634) |
5X
← 952684edo | 952685edo | 952686edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | -0.000084 | +0.000096 | +0.000489 | -0.000520 | +0.000583 | +0.000223 | +0.000476 | +0.000473 | +0.000615 | -0.000100 |
Relative (%) | +0.0 | +0.0 | -6.7 | +7.6 | +38.8 | -41.3 | +46.3 | +17.7 | +37.8 | +37.6 | +48.8 | -8.0 | |
Steps (reduced) |
952685 (0) |
1509970 (557285) |
2212066 (306696) |
2674525 (769155) |
3295749 (437694) |
3525353 (667298) |
3894065 (83325) |
4046937 (236197) |
4309530 (498790) |
4628126 (817386) |
4719789 (909049) |
4962968 (199543) |
6X
← 1143221edo | 1143222edo | 1143223edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | -0.000294 | +0.000096 | -0.000351 | -0.000100 | -0.000466 | -0.000197 | +0.000476 | +0.000263 | -0.000225 | +0.000320 |
Relative (%) | +0.0 | +0.0 | -28.0 | +9.1 | -33.4 | -9.5 | -44.4 | -18.8 | +45.3 | +25.1 | -21.4 | +30.4 | |
Steps (reduced) |
1143222 (0) |
1811964 (668742) |
2654479 (368035) |
3209430 (922986) |
3954898 (525232) |
4230424 (800758) |
4672877 (99989) |
4856324 (283436) |
5171436 (598548) |
5553751 (980863) |
5663746 (1090858) |
5955562 (239452) |
7X
← 1333758edo | 1333759edo | 1333760edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | -0.000444 | +0.000096 | -0.000051 | +0.000200 | -0.000316 | +0.000403 | -0.000424 | +0.000113 | +0.000075 | -0.000280 |
Relative (%) | +0.0 | +0.0 | -49.4 | +10.7 | -5.6 | +22.2 | -35.2 | +44.8 | -47.1 | +12.6 | +8.3 | -31.1 | |
Steps (reduced) |
1333759 (0) |
2113958 (780199) |
3096892 (429374) |
3744335 (1076817) |
4614048 (612771) |
4935495 (934218) |
5451690 (116654) |
5665712 (330676) |
6033341 (698305) |
6479376 (1144340) |
6607704 (1272668) |
6948155 (279360) |
8X
← 1524295edo | 1524296edo | 1524297edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | +0.000230 | +0.000096 | +0.000174 | -0.000363 | -0.000204 | +0.000065 | -0.000311 | +0.000001 | +0.000300 | +0.000057 |
Relative (%) | +0.0 | +0.0 | +29.3 | +12.2 | +22.1 | -46.1 | -25.9 | +8.3 | -39.5 | +0.1 | +38.1 | +7.3 | |
Steps (reduced) |
1524296 (0) |
2415952 (891656) |
3539306 (490714) |
4279240 (1230648) |
5273198 (700310) |
5640565 (1067677) |
6230503 (133319) |
6475099 (377915) |
6895247 (798063) |
7405001 (1307817) |
7551662 (1454478) |
7940749 (319269) |
9X
← 1714832edo | 1714833edo | 1714834edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | +0.000055 | +0.000096 | +0.000349 | -0.000100 | -0.000116 | -0.000197 | -0.000224 | -0.000087 | -0.000225 | +0.000320 |
Relative (%) | +0.0 | +0.0 | +7.9 | +13.7 | +49.9 | -14.3 | -16.6 | -28.2 | -32.0 | -12.4 | -32.2 | +45.7 | |
Steps (reduced) |
1714833 (0) |
2717946 (1003113) |
3981719 (552053) |
4814145 (1384479) |
5932348 (787849) |
6345636 (1201137) |
7009316 (149984) |
7284486 (425154) |
7757153 (897821) |
8330626 (1471294) |
8495619 (1636287) |
8933343 (359178) |
10X
← 1905369edo | 1905370edo | 1905371edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | -0.000084 | +0.000096 | -0.000141 | +0.000110 | -0.000047 | +0.000223 | -0.000154 | -0.000157 | -0.000015 | -0.000100 |
Relative (%) | +0.0 | +0.0 | -13.4 | +15.2 | -22.3 | +17.4 | -7.4 | +35.4 | -24.4 | -24.9 | -2.4 | -15.9 | |
Steps (reduced) |
1905370 (0) |
3019940 (1114570) |
4424132 (613392) |
5349050 (1538310) |
6591497 (875387) |
7050707 (1334597) |
7788129 (166649) |
8093874 (472394) |
8619059 (997579) |
9256251 (1634771) |
9439577 (1818097) |
9925936 (399086) |
11X
← 2095906edo | 2095907edo | 2095908edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | -0.000199 | +0.000096 | +0.000031 | +0.000282 | +0.000011 | -0.000006 | -0.000097 | -0.000214 | +0.000157 | +0.000129 |
Relative (%) | +0.0 | +0.0 | -34.8 | +16.7 | +5.4 | +49.2 | +1.9 | -1.1 | -16.9 | -37.4 | +27.4 | +22.5 | |
Steps (reduced) |
2095907 (0) |
3321934 (1226027) |
4866545 (674731) |
5883955 (1692141) |
7250647 (962926) |
7755778 (1468057) |
8566942 (183314) |
8903261 (519633) |
9480965 (1097337) |
10181876 (1798248) |
10383535 (1999907) |
10918530 (438995) |
12X
← 2286443edo | 2286444edo | 2286445edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | +0.000230 | +0.000096 | +0.000174 | -0.000100 | +0.000058 | -0.000197 | -0.000049 | -0.000262 | -0.000225 | -0.000205 |
Relative (%) | +0.0 | +0.0 | +43.9 | +18.3 | +33.2 | -19.1 | +11.1 | -37.6 | -9.3 | -49.8 | -42.9 | -39.1 | |
Steps (reduced) |
2286444 (0) |
3623928 (1337484) |
5308959 (736071) |
6418860 (1845972) |
7909797 (1050465) |
8460848 (1601516) |
9345755 (199979) |
9712648 (566872) |
10342871 (1197095) |
11107501 (1961725) |
11327492 (2181716) |
11911123 (478903) |
13X
← 2476980edo | 2476981edo | 2476982edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | +0.000109 | +0.000096 | -0.000189 | +0.000061 | +0.000099 | +0.000126 | -0.000008 | +0.000183 | -0.000064 | -0.000003 |
Relative (%) | +0.0 | +0.0 | +22.6 | +19.8 | -39.0 | +12.7 | +20.4 | +26.0 | -1.7 | +37.7 | -13.1 | -0.7 | |
Steps (reduced) |
2476981 (0) |
3925922 (1448941) |
5751372 (797410) |
6953765 (1999803) |
8568946 (1138003) |
9165919 (1734976) |
10124568 (216644) |
10522036 (614112) |
11204777 (1296853) |
12033127 (2125203) |
12271450 (2363526) |
12903717 (518812) |
14X
← 2667517edo | 2667518edo | 2667519edo → |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000000 | +0.000000 | +0.000005 | +0.000096 | -0.000051 | +0.000200 | +0.000133 | -0.000047 | +0.000026 | +0.000113 | +0.000075 | +0.000170 |
Relative (%) | +0.0 | +0.0 | +1.2 | +21.3 | -11.2 | +44.4 | +29.7 | -10.5 | +5.8 | +25.2 | +16.7 | +37.7 | |
Steps (reduced) |
2667518 (0) |
4227916 (1560398) |
6193785 (858749) |
7488670 (2153634) |
9228096 (1225542) |
9870990 (1868436) |
10903381 (233309) |
11331423 (661351) |
12066683 (1396611) |
12958752 (2288680) |
13215408 (2545336) |
13896311 (558721) |