User:Aura/Archangelic EDO checks

From Xenharmonic Wiki
Jump to navigation Jump to search

This page is dedicated to collecting data on EDOs tempering out the Archangelic comma. For continuation, see here.

1X

← 190536edo 190537edo 190538edo →
Prime factorization 190537 (prime)
Step size 0.00629799¢ 
Fifth 111457\190537 (701.955¢)
(convergent)
Semitones (A1:m2) 18051:14326 (113.7¢ : 90.22¢)
Consistency limit 11
Distinct consistency limit 11
Approximation of prime harmonics in 190537edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error Absolute (¢) +0.00000 +0.00000 -0.00134 +0.00010 +0.00175 +0.00200 +0.00058 -0.00230 +0.00048 -0.00079 +0.00187 +0.00242
Relative (%) +0.0 +0.0 -21.3 +1.5 +27.8 +31.7 +9.3 -36.5 +7.6 -12.5 +29.8 +38.4
Steps
(reduced)
190537
(0)
301994
(111457)
442413
(61339)
534905
(153831)
659150
(87539)
705071
(133460)
778813
(16665)
809387
(47239)
861906
(99758)
925625
(163477)
943958
(181810)
992594
(39909)

2X

← 381073edo 381074edo 381075edo →
Prime factorization 2 × 190537
Step size 0.00314899¢ 
Fifth 222914\381074 (701.955¢) (→111457\190537)
Semitones (A1:m2) 36102:28652 (113.7¢ : 90.22¢)
Consistency limit 15
Distinct consistency limit 15
Approximation of prime harmonics in 381074edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error Absolute (¢) +0.00000 +0.00000 -0.00134 +0.00010 -0.00140 -0.00115 +0.00058 +0.00085 +0.00048 -0.00079 -0.00127 -0.00073
Relative (%) +0.0 +0.0 -42.7 +3.0 -44.5 -36.5 +18.5 +27.1 +15.1 -25.0 -40.5 -23.2
Steps
(reduced)
381074
(0)
603988
(222914)
884826
(122678)
1069810
(307662)
1318299
(175077)
1410141
(266919)
1557626
(33330)
1618775
(94479)
1723812
(199516)
1851250
(326954)
1887915
(363619)
1985187
(79817)

3X

← 571610edo 571611edo 571612edo →
Prime factorization 3 × 190537
Step size 0.00209933¢ 
Fifth 334371\571611 (701.955¢) (→111457\190537)
Semitones (A1:m2) 54153:42978 (113.7¢ : 90.22¢)
Consistency limit 9
Distinct consistency limit 9
Approximation of prime harmonics in 571611edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error Absolute (¢) +0.000000 +0.000000 +0.000755 +0.000096 -0.000351 -0.000100 +0.000583 -0.000197 +0.000476 -0.000786 -0.000225 +0.000320
Relative (%) +0.0 +0.0 +36.0 +4.6 -16.7 -4.8 +27.8 -9.4 +22.7 -37.5 -10.7 +15.2
Steps
(reduced)
571611
(0)
905982
(334371)
1327240
(184018)
1604715
(461493)
1977449
(262616)
2115212
(400379)
2336439
(49995)
2428162
(141718)
2585718
(299274)
2776875
(490431)
2831873
(545429)
2977781
(119726)

4X

← 762147edo 762148edo 762149edo →
Prime factorization 22 × 190537
Step size 0.0015745¢ 
Fifth 445828\762148 (701.955¢) (→111457\190537)
Semitones (A1:m2) 72204:57304 (113.7¢ : 90.22¢)
Consistency limit 17
Distinct consistency limit 17
Approximation of prime harmonics in 762148edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error Absolute (¢) +0.000000 +0.000000 +0.000230 +0.000096 +0.000174 +0.000425 +0.000583 -0.000722 +0.000476 -0.000786 +0.000300 -0.000730
Relative (%) +0.0 +0.0 +14.6 +6.1 +11.1 +27.0 +37.0 -45.9 +30.2 -49.9 +19.0 -46.4
Steps
(reduced)
762148
(0)
1207976
(445828)
1769653
(245357)
2139620
(615324)
2636599
(350155)
2820283
(533839)
3115252
(66660)
3237549
(188957)
3447624
(399032)
3702500
(653908)
3775831
(727239)
3970374
(159634)

5X

← 952684edo 952685edo 952686edo →
Prime factorization 5 × 190537
Step size 0.0012596¢ 
Fifth 557285\952685 (701.955¢) (→111457\190537)
Semitones (A1:m2) 90255:71630 (113.7¢ : 90.22¢)
Consistency limit 11
Distinct consistency limit 11
Approximation of prime harmonics in 952685edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error Absolute (¢) +0.000000 +0.000000 -0.000084 +0.000096 +0.000489 -0.000520 +0.000583 +0.000223 +0.000476 +0.000473 +0.000615 -0.000100
Relative (%) +0.0 +0.0 -6.7 +7.6 +38.8 -41.3 +46.3 +17.7 +37.8 +37.6 +48.8 -8.0
Steps
(reduced)
952685
(0)
1509970
(557285)
2212066
(306696)
2674525
(769155)
3295749
(437694)
3525353
(667298)
3894065
(83325)
4046937
(236197)
4309530
(498790)
4628126
(817386)
4719789
(909049)
4962968
(199543)

6X

← 1143221edo 1143222edo 1143223edo →
Prime factorization 2 × 3 × 190537
Step size 0.00104966¢ 
Fifth 668742\1143222 (701.955¢) (→111457\190537)
Semitones (A1:m2) 108306:85956 (113.7¢ : 90.22¢)
Consistency limit 15
Distinct consistency limit 15
Approximation of prime harmonics in 1143222edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error Absolute (¢) +0.000000 +0.000000 -0.000294 +0.000096 -0.000351 -0.000100 -0.000466 -0.000197 +0.000476 +0.000263 -0.000225 +0.000320
Relative (%) +0.0 +0.0 -28.0 +9.1 -33.4 -9.5 -44.4 -18.8 +45.3 +25.1 -21.4 +30.4
Steps
(reduced)
1143222
(0)
1811964
(668742)
2654479
(368035)
3209430
(922986)
3954898
(525232)
4230424
(800758)
4672877
(99989)
4856324
(283436)
5171436
(598548)
5553751
(980863)
5663746
(1090858)
5955562
(239452)

7X

← 1333758edo 1333759edo 1333760edo →
Prime factorization 7 × 190537
Step size 0.000899713¢ 
Fifth 780199\1333759 (701.955¢) (→111457\190537)
Semitones (A1:m2) 126357:100282 (113.7¢ : 90.22¢)
Consistency limit 5
Distinct consistency limit 5
Approximation of prime harmonics in 1333759edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error Absolute (¢) +0.000000 +0.000000 -0.000444 +0.000096 -0.000051 +0.000200 -0.000316 +0.000403 -0.000424 +0.000113 +0.000075 -0.000280
Relative (%) +0.0 +0.0 -49.4 +10.7 -5.6 +22.2 -35.2 +44.8 -47.1 +12.6 +8.3 -31.1
Steps
(reduced)
1333759
(0)
2113958
(780199)
3096892
(429374)
3744335
(1076817)
4614048
(612771)
4935495
(934218)
5451690
(116654)
5665712
(330676)
6033341
(698305)
6479376
(1144340)
6607704
(1272668)
6948155
(279360)

8X

← 1524295edo 1524296edo 1524297edo →
Prime factorization 23 × 190537
Step size 0.000787249¢ 
Fifth 891656\1524296 (701.955¢) (→111457\190537)
Semitones (A1:m2) 144408:114608 (113.7¢ : 90.22¢)
Consistency limit 11
Distinct consistency limit 11
Approximation of prime harmonics in 1524296edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error Absolute (¢) +0.000000 +0.000000 +0.000230 +0.000096 +0.000174 -0.000363 -0.000204 +0.000065 -0.000311 +0.000001 +0.000300 +0.000057
Relative (%) +0.0 +0.0 +29.3 +12.2 +22.1 -46.1 -25.9 +8.3 -39.5 +0.1 +38.1 +7.3
Steps
(reduced)
1524296
(0)
2415952
(891656)
3539306
(490714)
4279240
(1230648)
5273198
(700310)
5640565
(1067677)
6230503
(133319)
6475099
(377915)
6895247
(798063)
7405001
(1307817)
7551662
(1454478)
7940749
(319269)

9X

← 1714832edo 1714833edo 1714834edo →
Prime factorization 32 × 190537
Step size 0.000699777¢ 
Fifth 1003113\1714833 (701.955¢) (→111457\190537)
Semitones (A1:m2) 162459:128934 (113.7¢ : 90.22¢)
Consistency limit 11
Distinct consistency limit 11
Approximation of prime harmonics in 1714833edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error Absolute (¢) +0.000000 +0.000000 +0.000055 +0.000096 +0.000349 -0.000100 -0.000116 -0.000197 -0.000224 -0.000087 -0.000225 +0.000320
Relative (%) +0.0 +0.0 +7.9 +13.7 +49.9 -14.3 -16.6 -28.2 -32.0 -12.4 -32.2 +45.7
Steps
(reduced)
1714833
(0)
2717946
(1003113)
3981719
(552053)
4814145
(1384479)
5932348
(787849)
6345636
(1201137)
7009316
(149984)
7284486
(425154)
7757153
(897821)
8330626
(1471294)
8495619
(1636287)
8933343
(359178)

10X

← 1905369edo 1905370edo 1905371edo →
Prime factorization 2 × 5 × 190537
Step size 0.000629799¢ 
Fifth 1114570\1905370 (701.955¢) (→111457\190537)
Semitones (A1:m2) 180510:143260 (113.7¢ : 90.22¢)
Consistency limit 17
Distinct consistency limit 17
Approximation of prime harmonics in 1905370edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error Absolute (¢) +0.000000 +0.000000 -0.000084 +0.000096 -0.000141 +0.000110 -0.000047 +0.000223 -0.000154 -0.000157 -0.000015 -0.000100
Relative (%) +0.0 +0.0 -13.4 +15.2 -22.3 +17.4 -7.4 +35.4 -24.4 -24.9 -2.4 -15.9
Steps
(reduced)
1905370
(0)
3019940
(1114570)
4424132
(613392)
5349050
(1538310)
6591497
(875387)
7050707
(1334597)
7788129
(166649)
8093874
(472394)
8619059
(997579)
9256251
(1634771)
9439577
(1818097)
9925936
(399086)

11X

← 2095906edo 2095907edo 2095908edo →
Prime factorization 11 × 190537
Step size 0.000572544¢ 
Fifth 1226027\2095907 (701.955¢) (→111457\190537)
Semitones (A1:m2) 198561:157586 (113.7¢ : 90.22¢)
Consistency limit 5
Distinct consistency limit 5
Approximation of prime harmonics in 2095907edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error Absolute (¢) +0.000000 +0.000000 -0.000199 +0.000096 +0.000031 +0.000282 +0.000011 -0.000006 -0.000097 -0.000214 +0.000157 +0.000129
Relative (%) +0.0 +0.0 -34.8 +16.7 +5.4 +49.2 +1.9 -1.1 -16.9 -37.4 +27.4 +22.5
Steps
(reduced)
2095907
(0)
3321934
(1226027)
4866545
(674731)
5883955
(1692141)
7250647
(962926)
7755778
(1468057)
8566942
(183314)
8903261
(519633)
9480965
(1097337)
10181876
(1798248)
10383535
(1999907)
10918530
(438995)

12X

← 2286443edo 2286444edo 2286445edo →
Prime factorization 22 × 3 × 190537
Step size 0.000524832¢ 
Fifth 1337484\2286444 (701.955¢) (→111457\190537)
Semitones (A1:m2) 216612:171912 (113.7¢ : 90.22¢)
Consistency limit 11
Distinct consistency limit 11
Approximation of prime harmonics in 2286444edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error Absolute (¢) +0.000000 +0.000000 +0.000230 +0.000096 +0.000174 -0.000100 +0.000058 -0.000197 -0.000049 -0.000262 -0.000225 -0.000205
Relative (%) +0.0 +0.0 +43.9 +18.3 +33.2 -19.1 +11.1 -37.6 -9.3 -49.8 -42.9 -39.1
Steps
(reduced)
2286444
(0)
3623928
(1337484)
5308959
(736071)
6418860
(1845972)
7909797
(1050465)
8460848
(1601516)
9345755
(199979)
9712648
(566872)
10342871
(1197095)
11107501
(1961725)
11327492
(2181716)
11911123
(478903)

13X

← 2476980edo 2476981edo 2476982edo →
Prime factorization 13 × 190537
Step size 0.000484461¢ 
Fifth 1448941\2476981 (701.955¢) (→111457\190537)
Semitones (A1:m2) 234663:186238 (113.7¢ : 90.22¢)
Consistency limit 9
Distinct consistency limit 9
Approximation of prime harmonics in 2476981edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error Absolute (¢) +0.000000 +0.000000 +0.000109 +0.000096 -0.000189 +0.000061 +0.000099 +0.000126 -0.000008 +0.000183 -0.000064 -0.000003
Relative (%) +0.0 +0.0 +22.6 +19.8 -39.0 +12.7 +20.4 +26.0 -1.7 +37.7 -13.1 -0.7
Steps
(reduced)
2476981
(0)
3925922
(1448941)
5751372
(797410)
6953765
(1999803)
8568946
(1138003)
9165919
(1734976)
10124568
(216644)
10522036
(614112)
11204777
(1296853)
12033127
(2125203)
12271450
(2363526)
12903717
(518812)

14X

← 2667517edo 2667518edo 2667519edo →
Prime factorization 2 × 7 × 190537
Step size 0.000449856¢ 
Fifth 1560398\2667518 (701.955¢) (→111457\190537)
Semitones (A1:m2) 252714:200564 (113.7¢ : 90.22¢)
Consistency limit 11
Distinct consistency limit 11
Approximation of prime harmonics in 2667518edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37
Error Absolute (¢) +0.000000 +0.000000 +0.000005 +0.000096 -0.000051 +0.000200 +0.000133 -0.000047 +0.000026 +0.000113 +0.000075 +0.000170
Relative (%) +0.0 +0.0 +1.2 +21.3 -11.2 +44.4 +29.7 -10.5 +5.8 +25.2 +16.7 +37.7
Steps
(reduced)
2667518
(0)
4227916
(1560398)
6193785
(858749)
7488670
(2153634)
9228096
(1225542)
9870990
(1868436)
10903381
(233309)
11331423
(661351)
12066683
(1396611)
12958752
(2288680)
13215408
(2545336)
13896311
(558721)