Lumatone mapping for 106edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are many conceivable ways to map 106edo onto the onto the Lumatone keyboard. However, it has 2 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them.

Diatonic

You can use the b val, which produces ultrapyth, but this is very sharp and only covers half of its notes due to the size of the edo.

28
48
31
51
71
91
5
14
34
54
74
94
8
28
48
17
37
57
77
97
11
31
51
71
91
5
0
20
40
60
80
100
14
34
54
74
94
8
28
48
3
23
43
63
83
103
17
37
57
77
97
11
31
51
71
91
5
92
6
26
46
66
86
0
20
40
60
80
100
14
34
54
74
94
8
28
48
95
9
29
49
69
89
3
23
43
63
83
103
17
37
57
77
97
11
31
51
71
91
5
78
98
12
32
52
72
92
6
26
46
66
86
0
20
40
60
80
100
14
34
54
74
94
8
28
48
101
15
35
55
75
95
9
29
49
69
89
3
23
43
63
83
103
17
37
57
77
97
11
31
51
71
91
5
38
58
78
98
12
32
52
72
92
6
26
46
66
86
0
20
40
60
80
100
14
34
54
74
94
8
101
15
35
55
75
95
9
29
49
69
89
3
23
43
63
83
103
17
37
57
77
97
11
38
58
78
98
12
32
52
72
92
6
26
46
66
86
0
20
40
60
80
100
101
15
35
55
75
95
9
29
49
69
89
3
23
43
63
83
103
38
58
78
98
12
32
52
72
92
6
26
46
66
86
101
15
35
55
75
95
9
29
49
69
89
38
58
78
98
12
32
52
72
101
15
35
55
75
38
58


There is an alternate diatonic scale that makes near perfect 5-limit chords easy to play, but it has an octave stretch of approximately half a syntonic comma. Since you can access every note in alternating octaves, this may actually be advantageous.

96
7
1
18
35
52
69
101
12
29
46
63
80
97
8
6
23
40
57
74
91
2
19
36
53
70
0
17
34
51
68
85
102
13
30
47
64
81
98
9
11
28
45
62
79
96
7
24
41
58
75
92
3
20
37
54
71
5
22
39
56
73
90
1
18
35
52
69
86
103
14
31
48
65
82
99
10
16
33
50
67
84
101
12
29
46
63
80
97
8
25
42
59
76
93
4
21
38
55
72
10
27
44
61
78
95
6
23
40
57
74
91
2
19
36
53
70
87
104
15
32
49
66
83
100
11
38
55
72
89
0
17
34
51
68
85
102
13
30
47
64
81
98
9
26
43
60
77
94
5
22
39
56
73
83
100
11
28
45
62
79
96
7
24
41
58
75
92
3
20
37
54
71
88
105
16
33
50
67
84
39
56
73
90
1
18
35
52
69
86
103
14
31
48
65
82
99
10
27
44
61
78
95
84
101
12
29
46
63
80
97
8
25
42
59
76
93
4
21
38
55
72
89
40
57
74
91
2
19
36
53
70
87
104
15
32
49
66
83
100
85
102
13
30
47
64
81
98
9
26
43
60
77
94
41
58
75
92
3
20
37
54
71
88
105
86
103
14
31
48
65
82
99
42
59
76
93
4
87
104

Semidiatonic

Dividing both the generator and period in two will neatly cover the whole gamut with a minimum of repeated notes, at the cost of halving the range.

2
11
6
15
24
33
42
1
10
19
28
37
46
55
64
5
14
23
32
41
50
59
68
77
86
95
0
9
18
27
36
45
54
63
72
81
90
99
2
11
4
13
22
31
40
49
58
67
76
85
94
103
6
15
24
33
42
105
8
17
26
35
44
53
62
71
80
89
98
1
10
19
28
37
46
55
64
3
12
21
30
39
48
57
66
75
84
93
102
5
14
23
32
41
50
59
68
77
86
95
104
7
16
25
34
43
52
61
70
79
88
97
0
9
18
27
36
45
54
63
72
81
90
99
2
11
11
20
29
38
47
56
65
74
83
92
101
4
13
22
31
40
49
58
67
76
85
94
103
6
15
24
33
42
33
42
51
60
69
78
87
96
105
8
17
26
35
44
53
62
71
80
89
98
1
10
19
28
37
46
64
73
82
91
100
3
12
21
30
39
48
57
66
75
84
93
102
5
14
23
32
41
50
86
95
104
7
16
25
34
43
52
61
70
79
88
97
0
9
18
27
36
45
11
20
29
38
47
56
65
74
83
92
101
4
13
22
31
40
49
33
42
51
60
69
78
87
96
105
8
17
26
35
44
64
73
82
91
100
3
12
21
30
39
48
86
95
104
7
16
25
34
43
11
20
29
38
47
33
42

Borwell

The 5L 8s Borwell mapping covers all the notes with slightly greater range, at the cost of a less familiar layout and slight downward slope for octaves.

0
7
10
17
24
31
38
13
20
27
34
41
48
55
62
23
30
37
44
51
58
65
72
79
86
93
26
33
40
47
54
61
68
75
82
89
96
103
4
11
36
43
50
57
64
71
78
85
92
99
0
7
14
21
28
35
42
39
46
53
60
67
74
81
88
95
102
3
10
17
24
31
38
45
52
59
66
49
56
63
70
77
84
91
98
105
6
13
20
27
34
41
48
55
62
69
76
83
90
97
52
59
66
73
80
87
94
101
2
9
16
23
30
37
44
51
58
65
72
79
86
93
100
1
8
15
69
76
83
90
97
104
5
12
19
26
33
40
47
54
61
68
75
82
89
96
103
4
11
18
25
32
39
46
93
100
1
8
15
22
29
36
43
50
57
64
71
78
85
92
99
0
7
14
21
28
35
42
49
56
18
25
32
39
46
53
60
67
74
81
88
95
102
3
10
17
24
31
38
45
52
59
66
42
49
56
63
70
77
84
91
98
105
6
13
20
27
34
41
48
55
62
69
73
80
87
94
101
2
9
16
23
30
37
44
51
58
65
72
79
97
104
5
12
19
26
33
40
47
54
61
68
75
82
22
29
36
43
50
57
64
71
78
85
92
46
53
60
67
74
81
88
95
77
84
91
98
105
101
2


ViewTalkEditLumatone mappings 
103edo104edo105edoLumatone mapping for 106edo107edo108edo109edo