List of edo-distinct 22et rank two temperaments
Jump to navigation
Jump to search
The temperaments listed are 22edo-distinct, meaning that they are all different even if tuned in 22edo. The ordering is by increasing complexity of 3. The temperament of lowest TE complexity was chosen as the representative for each class of edo-distinctness.
5-limit temperaments
Period,
generator |
Wedgie | Name | Complexity | Commas |
22, 9 | <<1 9 12]] | Superpyth | 2.947 | 20480/19683 |
11, 2 | <<2 -4 -11]] | Srutal | 2.121 | 2048/2025 |
22, 3 | <<3 5 1]] | Porcupine | 1.663 | 250/243 |
11, 1 | <<4 14 13]] | Comic | 4.290 | 5120000/4782969 |
22, 7 | <<5 1 -10]] | Magic | 2.417 | 3072/3125 |
11, 3 | <<16 -10 -53]] | Kwazy | 10.454 | 9010162353515625/9007199254740992 |
22, 5 | <<7 -3 -21]] | Orson | 4.232 | 2109375/2097152 |
11, 5 | <<8 6 -9]] | Doublewide | 3.565 | 390625/373248 |
22, 1 | <<13 7 -19]] | Chromo | 5.860 | 1220703125/1146617856 |
11, 4 | <<12 -2 -31]] | Wizard | 6.558 | 2197265625/2147483648 |
2, 1 | <<11 11 -8]] | Undeka | 5.011 | 48828125/45349632 |
7-limit temperaments
Period,
generator |
Wedgie | Name | Complexity | Commas |
22, 9 | <<1 9 -2 12 -6 -30]] | Superpyth | 2.874 | 64/63 245/243 |
11, 2 | <<2 -4 -4 -11 -12 2]] | Pajara | 1.953 | 50/49 64/63 |
22, 3 | <<3 5 -6 1 -18 -28]] | Porcupine | 2.819 | 64/63 250/243 |
11, 1 | <<4 14 14 13 11 -7]] | Comic | 3.815 | 50/49 2240/2187 |
22, 7 | <<5 1 12 -10 5 25]] | Magic | 2.937 | 225/224 245/243 |
11, 3 | <<6 10 10 2 -1 -5]] | Hedgehog | 2.784 | 50/49 245/243 |
22, 5 | <<7 -3 8 -21 -7 27]] | Orwell | 3.685 | 225/224 1728/1715 |
11, 5 | <<8 6 6 -9 -13 -3]] | Doublewide | 2.928 | 50/49 875/864 |
22, 1 | <<9 15 4 3 -19 -33]] | Ceratitid | 4.482 | 250/243 1728/1715 |
11, 4 | <<10 2 2 -20 -25 -1]] | Astrology | 4.127 | 50/49 3125/3072 |
2, 1 | <<11 11 0 -8 -31 -31]] | Undeka | 4.941 | 875/864 3200/3087 |
11-limit temperaments
Period,
generator |
Wedgie | Name | Complexity | Commas |
22, 9 | <<1 9 -2 -6 12 -6 -13 -30 -45 -10]] | Suprapyth | 3.011 | 55/54 64/63 99/98 |
11, 2 | <<2 -4 -4 -12 -11 -12 -26 2 -14 -20]] | Pajara | 2.543 | 50/49 64/63 99/98 |
22, 3 | <<3 5 -6 4 1 -18 -4 -28 -8 32]] | Porcupine | 2.478 | 55/54 64/63 100/99 |
11, 1 | <<4 -8 -8 -2 -22 -24 -17 4 23 22]] | Hemipaj | 3.389 | 50/49 64/63 121/120 |
22, 7 | <<5 1 12 14 -10 5 5 25 29 -2]] | Telepathy | 2.864 | 55/54 99/98 176/175 |
11, 3 | <<6 10 10 8 2 -1 -8 -5 -16 -12]] | Hedgehog | 2.439 | 50/49 55/54 99/98 |
22, 5 | <<7 -3 8 2 -21 -7 -21 27 15 -22]] | Orwell | 3.242 | 99/98 121/120 176/175 |
11, 5 | <<8 6 6 18 -9 -13 1 -3 21 30]] | Fleetwood | 3.081 | 50/49 55/54 176/175 |
22, 1 | <<9 15 4 12 3 -19 -12 -33 -24 20]] | Ceratitid | 3.880 | 55/54 100/99 5324/5145 |
11, 4 | <<10 2 2 6 -20 -25 -25 -1 7 10]] | Astrology | 3.575 | 50/49 121/120 176/175 |
2, 1 | <<11 11 0 0 -8 -31 -38 -31 -38 0]] | Undeka | 4.657 | 100/99 352/343 385/384 |
13-limit temperaments
Period,
generator |
Wedgie | Name | Complexity | Commas |
22, 9 | <<1 9 -2 -6 -9 12 -6 -13 -18 -30 -45 -54 -10 -18 -9]] | Suprapyth | 3.151 | 55/54 64/63 65/63 364/363 |
11, 2 | <<2 -4 -4 10 4 -11 -12 9 -1 2 37 24 42 26 -23]] | Pajarous | 2.481 | 50/49 55/54 64/63 65/63 |
22, 3 | <<3 5 -6 4 -5 1 -18 -4 -19 -28 -8 -30 32 8 -32]] | Porkpie | 2.487 | 55/54 64/63 65/63 100/99 |
11, 1 | <<4 14 14 20 8 13 11 18 -2 -7 -2 -33 8 -29 -46]] | Comic | 3.391 | 50/49 65/63 99/98 968/945 |
22, 7 | <<5 1 12 14 -1 -10 5 5 -20 25 29 -6 -2 -47 -55]] | Telepathy | 2.980 | 55/54 65/64 91/90 99/98 |
11, 3 | <<6 10 10 8 12 2 -1 -8 -3 -5 -16 -9 -12 -3 12]] | Hedgehog | 2.196 | 50/49 55/54 65/63 99/98 |
22, 5 | <<7 -3 8 2 3 -21 -7 -21 -21 27 15 18 -22 -21 3]] | Blair | 2.911 | 65/64 78/77 91/90 99/98 |
11, 5 | <<8 6 6 18 16 -9 -13 1 -4 -3 21 15 30 23 -11]] | Fleetwood | 2.861 | 50/49 55/54 65/63 176/175 |
22, 1 | <<9 15 4 12 7 3 -19 -12 -22 -33 -24 -39 20 5 -20]] | Ceratitid | 3.573 | 55/54 65/63 100/99 352/343 |
11, 4 | <<10 2 2 6 -2 -20 -25 -25 -40 -1 7 -12 10 -13 -29]] | Astrology | 3.495 | 50/49 65/64 78/77 121/120 |
2, 1 | <<11 11 0 0 11 -8 -31 -38 -23 -31 -38 -15 0 31 38]] | Undeka | 4.178 | 65/63 100/99 169/165 352/343 |