Ennealimmal–enneadecal equivalence continuum
The ennealimmal–enneadecal equivalence continuum is a continuum of 5-limit temperaments which equate a number of ennealimmas ([1 -27 18⟩) with enneadeca comma ([-14 -19 19⟩). This continuum is theoretically interesting in that these are all 5-limit microtemperaments.
All temperaments in the continuum satisfy (2・3−27・518)n ~ (2−14・3−19・519). Varying n results in different temperaments listed in the table below. It converges to ennealimmal as n approaches infinity. If we allow non-integer and infinite n, the continuum describes the set of all 5-limit temperaments supported by 171edo (due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them). The just value of n is approximately 3.2669545024..., and temperaments having n near this value tend to be the most accurate ones.
n | Temperament | Comma | |
---|---|---|---|
Ratio | Monzo | ||
−4 | 171 & 2429 | [-10 -127 91⟩ | |
−3 | 171 & 1817 | [-11 -100 73⟩ | |
−2 | Semidimi | [-12 -73 55⟩ | |
−1 | Supermajor | [-13 -46 37⟩ | |
0 | Enneadecal | 19073486328125/19042491875328 | [-14 -19 19⟩ |
1 | Schismic | 32805/32768 | [-15 8 1⟩ |
2 | Minortone | 50031545098999707/50000000000000000 | [-16 35 -17⟩ |
3 | Senior | [-17 62 -35⟩ | |
4 | 171 & 1783 | [18 -89 53⟩ | |
5 | 171 & 2395 | [19 -116 71⟩ | |
… | … | … | … |
∞ | Ennealimmal | 7629394531250/7625597484987 | [1 -27 18⟩ |
Examples of temperaments with fractional values of n:
- 171 & 3193 (n = −5/2 = −2.5)
- 171 & 2140 (n = −3/2 = −1.5)
- 171 & 1087 (n = −1/2 = −0.5)
- Pnict (n = 1/3 = 0.3)
- Gammic (n = 1/2 = 0.5)
- Mutt (n = 2/3 = 0.6)
- Septichrome (n = 4/3 = 1.3)
- Geb (n = 3/2 = 1.5)
- 171 & 1901 (n = 5/2 = 2.5)
- 171 & 4125 (n = 10/3 = 3.3)
- 171 & 3125 (n = 7/2 = 3.5)