Dave Keenan & Douglas Blumeyer's guide to RTT: conventions for names, variables, units, and notations
This is an appendix to Dave Keenan & Douglas Blumeyer's guide to RTT, or "D&D's guide" for short. The tables in this article present our recommendations for communicating about regular temperament theory (RTT), in particular the names and notations for temperament matrices, tuning schemes, interval complexities, and measurement units.
Our recommendations are designed to make this topic easy to learn for musicians who do not have technical backgrounds, though we have generally deferred to established mathematical, scientific, and engineering conventions for the benefit of those who do.
For more information on our variation on extended bra-ket notation, please see Extended bra-ket notation: Variant including curly and square brackets.
We've followed a symbol formatting pattern, explained by the table below, which we hope serves as an aid to quickly identifying objects and remembering their properties and purposes, but at the least we hope our choices are unobtrusive. In short, the objects with simple units of primes, generators or cents, i.e. the things which are actually audible in our application, are distinguished by upright formatting, while other variables are italic as is conventional. This is crossed with the mathematical convention that objects of order-1 like vectors are bolded and order-2 like matrices are uppercased:
units โ | simple units | compound or no units | ||
โ order | โ style โ | upright | italic | |
0 | plain | scalar with simple unit | scalar with no unit | |
1 | bold | vector | map (row vector) | |
2 | UPPERCASE | LIST or BASIS | true MATRIX |
We present our conventions here in three separate sections, one for each level of this article series: basic, intermediate, and advanced. The basic section contains only information covered in the basic part of the series, the intermediate section contains both basic and intermediate, and the advanced section contains it all (that is to say, the sections are cumulative)[1]. We expect that for most readers, the basic tier will be the best reference (this is the reference designed primarily for musicians interested in RTT, as opposed to scientists, engineers, mathematicians, or theoreticians), and so we've left the other two sections initially collapsed.
Basic
Objects
equivalent expressions | variable | name | units | shape | type | EBK notation | subobjects | notes | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
unreduced | reduced | read as | unreduced | reduced | numeric | structural | row-first | col-first | row | col | diag | entry | ||||
mapping | ||||||||||||||||
[math]\textbf{i}[/math] | (just) interval | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, 1)[/math] | integer | vector | [...โฉ | [math]\mathrm{i}_i[/math] | specific type: vector (prime-count vector or PC-vector)
jargon name: monzo | |||||||
[math]M[/math] | (temperament) mapping (matrix) | [math]\small ๐ด[/math]/[math]\small ๐ฝ[/math] | generators per prime | [math]\scriptsize (r, d)[/math] | integer | matrix | [โจ...] ...} | โจ[...} ...] | [math]๐_i[/math] | [math]m_{ij}[/math] | jargon name: val list | |||||
[math]M\textbf{i}[/math] | [math]\textbf{y}[/math] | mapped interval | [math]\scriptsize \begin{array} {c} M \\[-2pt] ๐ด \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \textbf{i} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\small ๐ด[/math] | generators | [math]\scriptsize \!\! \begin{array} {c} M \\[-3pt] (r, \cancel{d}) \end{array} \!\! \begin{array} {c} \textbf{i} \\[-3pt] (\cancel{d}, 1) \end{array} \!\! [/math] | [math]\scriptsize (r, 1)[/math] | integer | vector | [...} | specific type: generator-count vector (GC-vector)
jargon name: tmonzo; mnemonic: [math]\textbf{y}[/math]nterval | |||||
[math]๐[/math] | (temperament) map | [math]\small ๐ด[/math]/[math]\small ๐ฝ[/math] | generators per prime | [math]\scriptsize (1, d)[/math] | integer | vector | โจ...] | [math]m_i[/math] | jargon name: val | |||||||
[math]d[/math] | dimensionality | [math]\scriptsize (1, 1)[/math] | integer | scalar | ||||||||||||
[math]r[/math] | rank | [math]\scriptsize (1, 1)[/math] | integer | scalar | ||||||||||||
tuning | ||||||||||||||||
[math]{\large\textbf{๐}}\hspace{2mu}[/math] | log-prime map | [math]\small\mathsf{oct}[/math]/[math]\small ๐ฝ[/math] | octaves per prime | [math]\scriptsize (1, d)[/math] | real | vector | โจ...] | [math]{\large ๐}\hspace{2mu}_i[/math] | ||||||||
[math]1200ร{\large\textbf{๐}}\hspace{2mu}[/math] | [math]๐[/math] | just(-prime) tuning map | [math]\mathsf{ยข}[/math]/[math]\small ๐ฝ[/math] | cents per prime | [math]\scriptsize (1, d)[/math] | real | vector | โจ...] | [math]j_i[/math] | |||||||
[math]๐[/math] | generator tuning map | [math]\mathsf{ยข}[/math]/[math]\small ๐ด[/math] | cents per generator | [math]\scriptsize (1, r)[/math] | real | vector | {...] | [math]g_i[/math] | ||||||||
[math]๐M[/math] | [math]๐[/math] | (tempered-prime) tuning map | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ด} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} ๐ \\[-2pt] \cancel{๐ด} \hspace{-2mu} / \hspace{-2mu} ๐ฝ \end{array} [/math] | [math]\mathsf{ยข}[/math]/[math]\small ๐ฝ[/math] | cents per prime | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{r}) \end{array} \!\! \begin{array} {c} M \\[-3pt] (\cancel{r}, d) \end{array} \!\! [/math] | [math]\scriptsize (1, d)[/math] | real | vector | โจ...] | [math]t_i[/math] | |||||
[math]๐ - ๐[/math] | [math]๐[/math] | retuning (or mistuning) map | [math]\mathsf{ยข}[/math]/[math]\small ๐ฝ[/math] | cents per prime | [math]\scriptsize (1, d)[/math] | real | vector | โจ...] | [math]r_i[/math] | previous name: prime error map | ||||||
[math]๐\textbf{i}[/math] | [math]\mathrm{o}[/math] | (just) (interval) size | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \textbf{i} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \textbf{i} \\[-3pt] (\cancel{d}, 1) \end{array} \!\! [/math] | [math]\scriptsize (1, 1)[/math] | real | scalar | mnemonic: [math]\mathrm{o}[/math]riginal size | ||||||
[math]๐M\textbf{i} \\ ๐\textbf{i}[/math] | [math]\mathrm{a}[/math] | tempered (interval) size | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \textbf{i} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \textbf{i} \\[-3pt] (\cancel{d}, 1) \end{array} \!\! [/math] | [math]\scriptsize (1, 1)[/math] | real | scalar | mnemonic: [math]\mathrm{a}[/math]ltered size | ||||||
[math]๐\textbf{i} - ๐\textbf{i} \\ a - o \\ ๐\textbf{i}[/math] | [math]\mathrm{e}[/math] | (interval) error | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \textbf{i} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \textbf{i} \\[-3pt] (\cancel{d}, 1) \end{array} \!\! [/math] | [math]\scriptsize (1, 1)[/math] | real | scalar | |||||||
optimization | ||||||||||||||||
[math]p[/math] | optimization power | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||||
[math]โช\,ยท\,โซ_p[/math] | power mean ([math]p[/math]-mean) | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||||
damage | ||||||||||||||||
[math]c[/math] | complexity | [math]\small\mathsf{๐}\scriptsize\mathsf{(C)}[/math][2] | [math]\small\mathsf{(C)}[/math] | complexity weight | [math]\scriptsize (1, 1)[/math] | real | scalar | |||||||||
[math]\dfrac1c[/math] | [math]s[/math] | simplicity | [math]\small\mathsf{๐}\scriptsize\mathsf{(S)}[/math] | [math]\small\mathsf{(S)}[/math] | simplicity weight | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||
[math]c[/math] or [math]s[/math] | [math]w[/math] | weight | [math]\small\mathsf{๐}\scriptsize\mathsf{(C)}[/math] or ๐[math]\small\mathsf{(S)}[/math] | [math]\small\mathsf{(C)}[/math] or [math]\small\mathsf{(S)}[/math] | complexity weight or simplicity weight | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||
[math]|\mathrm{e}|w[/math] | [math]\mathrm{d}[/math] | damage | [math]\scriptsize \begin{array} {c} |\mathrm{e}| \\[-2pt] {\small\mathsf{ยข}} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} w \\[-2pt] \mathsf{(U, C, or\,S)} \end{array} [/math] | [math]\mathsf{ยข}\small\mathsf{(U)}[/math] or [math]\mathsf{ยข}\small\mathsf{(C)}[/math] or [math]\mathsf{ยข}\small\mathsf{(S)}[/math] | (see damages table) | [math]\scriptsize \!\! \begin{array} {c} |\mathrm{e}| \\[-3pt] (1, \cancel{1}) \end{array} \!\! \begin{array} {c} w \\[-3pt] (\cancel{1}, 1) \end{array} \!\! [/math] | [math]\scriptsize (1, 1)[/math] | real | scalar | |||||||
target-intervals | ||||||||||||||||
[math]\mathrm{T}[/math] | target-interval list | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, k)[/math] | integer | matrix | [[...โฉ ...] | [math]\textbf{t}_i[/math] | [math]\mathrm{t}_{ij}[/math] | |||||||
[math]M\mathrm{T}[/math] | [math]\mathrm{Y}[/math] | mapped target-interval list | [math]\scriptsize \begin{array} {c} M \\[-2pt] ๐ด \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \mathrm{T} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\small ๐ด[/math] | generators | [math]\scriptsize \!\! \begin{array} {c} M \\[-3pt] (r, \cancel{d}) \end{array} \!\! \begin{array} {c} \mathrm{T} \\[-3pt] (\cancel{d}, k) \end{array} \!\! [/math] | [math]\scriptsize (r, k)[/math] | integer | matrix | [[...} ...] | [math]\textbf{y}_i[/math] | [math]\mathrm{y}_{ij}[/math] | mnemonic: looks like bent-up 'T', or cross between 'M' and 'T' | |||
[math]๐\mathrm{T}[/math] | [math]\textbf{o}[/math] | target-interval (just) size list | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \mathrm{T} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \mathrm{T} \\[-3pt] (\cancel{d}, k) \end{array} \!\! [/math] | [math]\scriptsize (1, k)[/math] | real | list | [...] | [math]\mathrm{o}_i[/math] | mnemonic: [math]\textbf{o}[/math]riginal size list | ||||
[math]๐\mathrm{T} \\ ๐M\mathrm{T}[/math] | [math]\textbf{a}[/math] | tempered target-interval size list | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \mathrm{T} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \mathrm{T} \\[-3pt] (\cancel{d}, k) \end{array} \!\! [/math] | [math]\scriptsize (1, k)[/math] | real | list | [...] | [math]\mathrm{a}_i[/math] | mnemonic: [math]\textbf{a}[/math]ltered size list | ||||
[math]๐\mathrm{T} - ๐\mathrm{T}\\ \textbf{a} - \textbf{o} \\ ๐\mathrm{T} [/math] | [math]\textbf{e}[/math] | target-interval error list | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \mathrm{T} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \mathrm{T} \\[-3pt] (\cancel{d}, k) \end{array} \!\! [/math] | [math]\scriptsize (1, k)[/math] | real | list | [...] | [math]\mathrm{e}_i[/math] | |||||
[math]C[/math] or [math]S[/math] | [math]W[/math] | target-interval weight matrix | [math]\small\mathsf{๐}\scriptsize\mathsf{(C)}[/math] or [math]\small\mathsf{๐}\scriptsize\mathsf{(S)}[/math] or [math]\small\mathsf{๐}\scriptsize\mathsf{(U)}[/math] | [math]\small\mathsf{(C)}[/math] or [math]\small\mathsf{(S)}[/math] or [math]\small\mathsf{(U)}[/math] | complexity weight or simplicity weight | [math]\scriptsize (k, k)[/math] | real | matrix | [[...] ...] | [math]๐[/math] | [math]w_i[/math] | |||||
[math]C[/math] | target-interval complexity weight matrix | [math]\small\mathsf{๐}\scriptsize\mathsf{(C)}[/math] | [math]\small\mathsf{(C)}[/math] | complexity weight | [math]\scriptsize (k, k)[/math] | real | matrix | [[...] ...] | [math]๐[/math] | [math]c_i[/math] | ||||||
[math]\dfrac1C[/math] | [math]S[/math] | target-interval simplicity weight matrix | [math]\small\mathsf{๐}\scriptsize\mathsf{(S)}[/math] | [math]\small\mathsf{(S)}[/math] | simplicity weight | [math]\scriptsize (k, k)[/math] | real | matrix | [[...] ...] | [math]๐[/math] | [math]s_i[/math] | entrywise reciprocal of [math]C[/math] | ||||
[math]|\textbf{e}|W[/math] | [math]\textbf{d}[/math] | target-interval damage list[3] | [math]\scriptsize \begin{array} {c} |\textbf{e}| \\[-2pt] {\small\mathsf{ยข}} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} W \\[-2pt] (\mathsf{U, C, or\,S}) \end{array} [/math] | [math]\mathsf{ยข}\small\mathsf{(U)}[/math], [math]\mathsf{ยข}\small\mathsf{(C)}[/math], or [math]\mathsf{ยข}\small\mathsf{(S)}[/math] | weighted cents | [math]\scriptsize \!\! \begin{array} {c} |\textbf{e}| \\[-3pt] (1, \cancel{k}) \end{array} \!\! \begin{array} {c} W \\[-3pt] (\cancel{k}, k) \end{array} \!\! [/math] | [math]\scriptsize (1, k)[/math] | real | list | [...] | [math]\mathrm{d}_i[/math] | |||||
[math]k[/math] | target-interval count | [math]\scriptsize (1, 1)[/math] | integer | scalar | mnemonic: [math]k[/math]ount | |||||||||||
held-intervals | ||||||||||||||||
[math]\mathrm{H}[/math] | held-interval basis | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, h)[/math] | matrix | [[...โฉ ...] | [math]\textbf{h}_i[/math] | [math]\mathrm{h}_{ij}[/math] | ||||||||
[math]h[/math] | held-interval count | [math]\scriptsize (1, 1)[/math] | integer | scalar | ||||||||||||
exploring temperaments | ||||||||||||||||
[math]\mathrm{C}[/math] | comma basis | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, n)[/math] | integer | matrix | [[...โฉ ...] | [math]\textbf{c}_i[/math] | [math]\mathrm{c}_{ij}[/math] | jargon name: monzo list | ||||||
[math]\textbf{c}[/math] | comma | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, 1)[/math] | integer | vector | [...โฉ | [math]\mathrm{c}_i[/math] | specific type: vector (prime-count vector or PC-vector) |
Units
We recommend using a narrow no-break space (U+202F) between quantities and their units.[4] For how to type this, see the WinCompose section below.
symbol | name | vectorized |
---|---|---|
[math]\small ๐ด[/math] | generators | yes |
[math]\small ๐ฝ[/math] | primes | yes |
[math]\mathsf{ยข}[/math][5] | cents | |
[math]\mathsf{ยข}\small\mathsf{(U)}[/math] | unity-weighted cents | |
[math]\mathsf{ยข}\small\mathsf{(C)}[/math] | complexity-weighted cents | |
[math]\mathsf{ยข}\small\mathsf{(S)}[/math] | simplicity-weighted cents | |
[math]\small\mathsf{oct}[/math] | octaves | |
[math]\small\mathsf{(C)}[/math] | complexity weight | |
[math]\small\mathsf{(S)}[/math] | simplicity weight |
Tuning schemes
Copied from Dave Keenan & Douglas Blumeyer's guide to RTT: tuning fundamentals#Systematic tuning scheme names.
damage weight | optimization power | systematic name |
<none> | โ | minimax-U |
complexity | minimax-C | |
1/complexity | minimax-S | |
<none> | 2 | miniRMS-U |
complexity | miniRMS-C | |
1/complexity | miniRMS-S | |
<none> | 1 | miniaverage-U |
complexity | miniaverage-C | |
1/complexity | miniaverage-S |
Damages
quantity | unit | ||
---|---|---|---|
abbreviation | name | symbol | name |
U-damage | unity-weight damage | [math]\mathsf{ยข}\small\mathsf{(U)}[/math] | unity-weighted cents |
C-damage | complexity-weight damage | [math]\mathsf{ยข}\small\mathsf{(C)}[/math] | complexity-weighted cents |
S-damage | simplicity-weight damage | [math]\mathsf{ยข}\small\mathsf{(S)}[/math] | simplicity-weighted cents |
Complexity and simplicity
quantity | unit | ||
---|---|---|---|
abbreviation | name | symbol | name |
C | complexity | [math]\small\mathsf{(C)}[/math] | complexity weight |
S | simplicity | [math]\small\mathsf{(S)}[/math] | simplicity weight |
[math] % \slant{} command approximates italics to allow slanted bold characters, including digits, in MathJax. \def\slant#1{\style{display:inline-block;margin:-.05em;transform:skew(-14deg)translateX(.03em)}{#1}} % Latex equivalents of the wiki templates llzigzag and rrzigzag for double zigzag brackets. \def\llzigzag{\hspace{-1.6mu}\style{display:inline-block;transform:scale(.62,1.24)translateY(.07em);font-family:sans-serif}{๊จ\hspace{-3mu}๊จ}\hspace{-1.6mu}} \def\rrzigzag{\hspace{-1.6mu}\style{display:inline-block;transform:scale(-.62,1.24)translateY(.07em);font-family:sans-serif}{๊จ\hspace{-3mu}๊จ}\hspace{-1.6mu}} [/math]
Intermediate
Objects
equivalent expressions | variable | name | units | shape | type | EBK notation | subobjects | notes | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
unreduced | reduced | read as | unreduced | reduced | numeric | structural | row-first | col-first | row | col | diag | entry | ||||
mapping | ||||||||||||||||
[math]\textbf{i}[/math] | (just) interval | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, 1)[/math] | integer | vector | [...โฉ | [math]\mathrm{i}_i[/math] | specific type: vector (prime-count vector or PC-vector)
jargon name: monzo | |||||||
[math]M[/math] | (temperament) mapping (matrix) | [math]\small ๐ด[/math]/[math]\small ๐ฝ[/math] | generators per prime | [math]\scriptsize (r, d)[/math] | integer | matrix | [โจ...] ...} | โจ[...} ...] | [math]๐_i[/math] | [math]m_{ij}[/math] | jargon name: val list | |||||
[math]M\textbf{i}[/math] | [math]\textbf{y}[/math] | mapped interval | [math]\scriptsize \begin{array} {c} M \\[-2pt] ๐ด \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \textbf{i} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\small ๐ด[/math] | generators | [math]\scriptsize \!\! \begin{array} {c} M \\[-3pt] (r, \cancel{d}) \end{array} \!\! \begin{array} {c} \textbf{i} \\[-3pt] (\cancel{d}, 1) \end{array} \!\! [/math] | [math]\scriptsize (r, 1)[/math] | integer | vector | [...} | specific type: generator-count vector (GC-vector)
jargon name: tmonzo; mnemonic: [math]\textbf{y}[/math]nterval | |||||
[math]๐[/math] | (temperament) map | [math]\small ๐ด[/math]/[math]\small ๐ฝ[/math] | generators per prime | [math]\scriptsize (1, d)[/math] | integer | vector | โจ...] | [math]m_i[/math] | jargon name: val | |||||||
[math]n + r[/math] | [math]d[/math] | dimensionality | [math]\scriptsize (1, 1)[/math] | integer | scalar | |||||||||||
[math]d - n[/math] | [math]r[/math] | rank | [math]\scriptsize (1, 1)[/math] | integer | scalar | |||||||||||
[math]d - r[/math] | [math]n[/math] | nullity | [math]\scriptsize (1, 1)[/math] | integer | scalar | |||||||||||
tuning | ||||||||||||||||
[math]{\large\textbf{๐}}\hspace{2mu}[/math] | log-prime map | [math]\small\mathsf{oct}[/math]/[math]\small ๐ฝ[/math] | octaves per prime | [math]\scriptsize (1, d)[/math] | real | vector | โจ...] | [math]{\large ๐}\hspace{2mu}_i[/math] | ||||||||
[math]1200ร{\large\textbf{๐}}\hspace{2mu}[/math] | [math]๐[/math] | just(-prime) tuning map | [math]\mathsf{ยข}[/math]/[math]\small ๐ฝ[/math] | cents per prime | [math]\scriptsize (1, d)[/math] | real | vector | โจ...] | [math]j_i[/math] | |||||||
[math]๐[/math] | generator tuning map | [math]\mathsf{ยข}[/math]/[math]\small ๐ด[/math] | cents per generator | [math]\scriptsize (1, r)[/math] | real | vector | {...] | [math]g_i[/math] | ||||||||
[math]๐[/math] | (tempered-prime) tuning map | [math]\mathsf{ยข}[/math]/[math]\small ๐ฝ[/math] | cents per prime | [math]\scriptsize (1, d)[/math] | real | vector | โจ...] | [math]t_i[/math] | ||||||||
[math]๐ - ๐ \\ 1200ร\slant{\mathbf{1}}L(P - I)[/math] | [math]๐[/math] | retuning (or mistuning) map | [math]\mathsf{ยข}[/math]/[math]\small ๐ฝ[/math] | cents per prime | [math]\scriptsize (1, d)[/math] | real | vector | โจ...] | [math]r_i[/math] | previous name: prime error map | ||||||
[math]๐\textbf{i}[/math] | [math]\mathrm{o}[/math] | (just) (interval) size | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \textbf{i} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \mathbf{i} \\[-3pt] (\cancel{d}, 1) \end{array} \!\! [/math] | [math]\scriptsize (1, 1)[/math] | real | scalar | mnemonic: [math]\mathrm{o}[/math]riginal size | ||||||
[math]๐M\textbf{i} \\ ๐\textbf{i}[/math] | [math]\mathrm{a}[/math] | tempered (interval) size | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \textbf{i} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \textbf{i} \\[-3pt] (\cancel{d}, 1) \end{array} \!\! [/math] | [math]\scriptsize (1, 1)[/math] | real | scalar | mnemonic: [math]\mathrm{a}[/math]ltered size | ||||||
[math]๐\textbf{i} - ๐\textbf{i} \\ a - o \\ ๐\textbf{i}[/math] | [math]\mathrm{e}[/math] | (interval) error | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \textbf{i} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \textbf{i} \\[-3pt] (\cancel{d}, 1) \end{array} \!\! [/math] | [math]\scriptsize (1, 1)[/math] | real | scalar | |||||||
optimization | ||||||||||||||||
[math]p[/math] | optimization power | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||||
[math]โช\,ยท\,โซ_p[/math] | power mean ([math]p[/math]-mean) | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||||
damage | ||||||||||||||||
[math]c[/math] | complexity | (see complexities section of complexities and simplicities table) | [math]\scriptsize (1, 1)[/math] | real | scalar | |||||||||||
[math]\dfrac1c[/math] | [math]s[/math] | simplicity | (see simplicities section of complexities and simplicities table) | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||
[math]c[/math] or [math]s[/math] | [math]w[/math] | weight | (see complexities and simplicities table) | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||
[math]|\mathrm{e}|w[/math] | [math]\mathrm{d}[/math] | damage | (see damages table) | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||
target-intervals | ||||||||||||||||
[math]\mathrm{T}[/math] | target-interval list | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, k)[/math] | integer | matrix | [[...โฉ ...] | [math]\textbf{t}_i[/math] | [math]\mathrm{t}_{ij}[/math] | |||||||
[math]M\mathrm{T}[/math] | [math]\mathrm{Y}[/math] | mapped target-interval list | [math]\scriptsize \begin{array} {c} M \\[-2pt] ๐ด \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \mathrm{T} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\small ๐ด[/math] | generators | [math]\scriptsize \!\! \begin{array} {c} M \\[-3pt] (r, \cancel{d}) \end{array} \!\! \begin{array} {c} \mathrm{T} \\[-3pt] (\cancel{d}, k) \end{array} \!\! [/math] | [math]\scriptsize (r, k)[/math] | integer | matrix | [[...} ...] | [math]\textbf{y}_i[/math] | [math]\mathrm{y}_{ij}[/math] | mnemonic: looks like bent-up 'T', or cross between 'M' and 'T' | |||
[math]๐\mathrm{T}[/math] | [math]\textbf{o}[/math] | target-interval (just) size list | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \mathrm{T} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \mathrm{T} \\[-3pt] (\cancel{d}, k) \end{array} \!\! [/math] | [math]\scriptsize (1, k)[/math] | real | list | [...] | [math]\mathrm{o}_i[/math] | mnemonic: [math]\textbf{o}[/math]riginal size list | ||||
[math]๐\mathrm{T}[/math] | [math]\textbf{a}[/math] | tempered target-interval size list | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \mathrm{T} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \mathrm{T} \\[-3pt] (\cancel{d}, k) \end{array} \!\! [/math] | [math]\scriptsize (1, k)[/math] | real | list | [...] | [math]\mathrm{a}_i[/math] | mnemonic: [math]\textbf{a}[/math]ltered size list | ||||
[math]๐\mathrm{T} - ๐\mathrm{T} \\ ๐\mathrm{T} \\ \textbf{a} - \textbf{o}[/math] | [math]\textbf{e}[/math] | target-interval error list | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \mathrm{T} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \mathrm{T} \\[-3pt] (\cancel{d}, k) \end{array} \!\! [/math] | [math]\scriptsize (1, k)[/math] | real | list | [...] | [math]\mathrm{e}_i[/math] | |||||
[math]C[/math] or [math]S[/math] | [math]W[/math] | target-interval weight matrix | (see complexities and simplicities table) | [math]\scriptsize (k, k)[/math] | real | matrix | [[...] ...] | [math]๐[/math] | [math]w_i[/math] | |||||||
[math]C[/math] | target-interval complexity weight matrix | (see complexities section of complexities and simplicities table) | [math]\scriptsize (k, k)[/math] | real | matrix | [[...] ...] | [math]๐[/math] | [math]c_i[/math] | ||||||||
[math]\dfrac1C[/math] | [math]S[/math] | target-interval simplicity weight matrix | (see simplicities section of complexities and simplicities table) | [math]\scriptsize (k, k)[/math] | real | matrix | [[...] ...] | [math]๐[/math] | [math]s_i[/math] | entrywise reciprocal of [math]C[/math] | ||||||
[math]|\textbf{e}|W[/math] | [math]\textbf{d}[/math] | target-interval damage list | (see damages table) | [math]\scriptsize (1, k)[/math] | real | list | [...] | [math]\mathrm{d}_i[/math] | ||||||||
[math]k[/math] | target-interval count | [math]\scriptsize (1, 1)[/math] | integer | scalar | mnemonic: [math]k[/math]ount | |||||||||||
held-intervals | ||||||||||||||||
[math]\mathrm{H}[/math] | held-interval basis | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, h)[/math] | matrix | [[...โฉ ...] | [math]\textbf{h}_i[/math] | [math]\mathrm{h}_{ij}[/math] | ||||||||
[math]h[/math] | held-interval count | [math]\scriptsize (1, 1)[/math] | integer | scalar | ||||||||||||
exploring temperaments | ||||||||||||||||
[math]\mathrm{C}[/math] | comma basis | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, n)[/math] | integer | matrix | [[...โฉ ...] | [math]\textbf{c}_i[/math] | [math]\mathrm{c}_{ij}[/math] | jargon name: monzo list | ||||||
[math]\textbf{c}[/math] | comma | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, 1)[/math] | integer | vector | [...โฉ | [math]\mathrm{c}_i[/math] | specific type: vector (prime-count vector or PC-vector) | |||||||
computation | ||||||||||||||||
[math]\llzigzagยท\,\rrzigzag\!_p[/math] | power sum ([math]p[/math]-sum) | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||||
all-interval tuning schemes | ||||||||||||||||
[math]\mathrm{I}[/math] | [math]\mathrm{T}_{\text{p}}[/math] | prime proxy target-interval list | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, d)[/math] | integer | matrix | โจ[...โฉ ...] | [math]\mathbf{1}[/math] | |||||||
[math]X[/math] | complexity prescaler | [math]\small\mathsf{๐}\scriptsize\mathsf{(C)}[/math] | [math]\small\mathsf{(C)}[/math] | complexity weight | [math]\scriptsize (d, d)[/math] | real | matrix | [โจ...] ...โฉ | [math]๐[/math] | [math]x_i[/math] | ||||||
[math]\text{diag}({\large\textbf{๐}}\hspace{2mu})[/math] | [math]L[/math] | log-prime matrix | [math]\small\mathsf{oct}[/math]/[math]\small ๐ฝ[/math] | octaves per prime | [math]\scriptsize (d, d)[/math] | real | matrix | [โจ...] ...โฉ | โจ[...โฉ ...] | [math]{\large\textbf{๐}}\hspace{2mu}_i[/math] | [math]{\large\textbf{๐}}\hspace{2mu}[/math] | [math]{\large ๐}\hspace{2mu}_{ij}[/math] | ||||
[math]q[/math] | interval complexity norm power | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||||
[math]โ ยท โ_q[/math] | power norm ([math]p[/math]-norm) | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||||
[math]\dfrac1{1-\frac1q}[/math] | [math]\text{dual}(q)[/math] | dual norm power | [math]\scriptsize (1, 1)[/math] | real | scalar | |||||||||||
[math]โX\mathbf{i}โ_q[/math] | interval complexity | [math]\small\mathsf{(C)}[/math] | [math]\scriptsize (1, 1)[/math] | real | scalar | |||||||||||
[math]โ๐X^{-1}โ_{\text{dual}(q)}[/math] | retuning magnitude | [math]\mathsf{ยข}\small\mathsf{(C^{-1})}[/math] | [math]\scriptsize (1, 1)[/math] | real | scalar |
Units
Same as the basic level.
Tuning schemes
retuning (or mistuning) magnitude | damage | target
intervals |
systematic name | previously named tuning schemes that are specific types of this tuning scheme | of interest? | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
weight | optimization | |||||||||||||||
interval complexity | slope | initial | name | power | ||||||||||||
initial | name | power | initial | name | power | initial | name | multiplier | abbreviated | read ("____ tuning scheme") | ||||||
<n/a> | maximum | โ | (t) | taxicab | 1 | S | simplicity-weight | 1/complexity | <n/a> | minimax | โ | all | minimax-S | minimax simplicity-weight damage | "TOP"/"T1"/"TIPTOP"*, "CTOP", "POTOP"/"POTT"*, "BOP", "Weil", "Kees" | yes |
<n/a> | Euclidean | 2 | E | Euclidean | 2 | minimax-ES | minimax Euclideanized-simplicity-weight damage | "TE"/"T2"/"TOP-RMS", "CTE", "POTE", "Frobenius", "BE", "WE", "KE" | ||||||||
<n/a> | <n/a> | U | unity-weight | <none> | <set> | <set> minimax-U | <set> minimax unity-weight-damage | "minimax" | yes | |||||||
(t) | taxicab | 1 | S | simplicity-weight | 1/complexity | <set> minimax-S | <set> minimax simplicity-weight damage | yes | ||||||||
E | Euclidean | 2 | <set> minimax-ES | <set> minimax Euclideanized-simplicity-weight damage | ||||||||||||
(t) | taxicab | 1 | C | complexity-weight | complexity | <set> minimax-C | <set> minimax complexity-weight damage | yes | ||||||||
E | Euclidean | 2 | <set> minimax-EC | <set> minimax Euclideanized-complexity-weight damage | ||||||||||||
<n/a> | U | unity-weight | <none> | miniRMS | 2 | <set> miniRMS-U | <set> miniRMS unity-weight damage | "least squares" | yes | |||||||
(t) | taxicab | 1 | S | simplicity-weight | 1/complexity | <set> miniRMS-S | <set> miniRMS simplicity-weight damage | yes | ||||||||
E | Euclidean | 2 | <set> miniRMS-ES | <set> miniRMS Euclideanized-simplicity-weight damage | ||||||||||||
(t) | taxicab | 1 | C | complexity-weight | complexity | <set> miniRMS-C | <set> miniRMS complexity-weight damage | yes | ||||||||
E | Euclidean | 2 | <set> miniRMS-EC | <set> miniRMS Euclideanized-complexity-weight damage | ||||||||||||
<n/a> | U | unity-weight | <none> | miniaverage | 1 | <set> miniaverage-U | <set> miniaverage unity-weight damage | yes | ||||||||
(t) | taxicab | 1 | S | simplicity-weight | 1/complexity | <set> miniaverage-S | <set> miniaverage simplicity-weight damage | yes | ||||||||
E | Euclidean | 2 | <set> miniaverage-ES | <set> miniaverage Euclideanized-simplicity-weight damage | ||||||||||||
(t) | taxicab | 1 | C | complexity-weight | complexity | <set> miniaverage-C | <set> miniaverage complexity-weight damage | yes | ||||||||
E | Euclidean | 2 | <set> miniaverage-EC | <set> miniaverage Euclideanized-complexity-weight damage |
Damages
quantity | unit | ||
---|---|---|---|
abbreviation | name | symbol | name |
U-damage | unity-weight damage | [math]\mathsf{ยข}\small\mathsf{(U)}[/math] | unity-weighted cents |
C-damage | complexity-weight damage | [math]\mathsf{ยข}\small\mathsf{(C)}[/math] | complexity-weighted cents |
EC-damage | Euclideanized-complexity-weight damage | [math]\mathsf{ยข}[/math][math]\small\mathsf{(EC)}[/math] | Euclideanized-complexity-weighted cents |
S-damage | simplicity-weight damage | [math]\mathsf{ยข}\small\mathsf{(S)}[/math] | simplicity-weighted cents |
ES-damage | Euclideanized-simplicity-weight damage | [math]\mathsf{ยข}[/math][math]\small\mathsf{(ES)}[/math] | Euclideanized-simplicity-weighted cents |
Complexity and simplicity
quantity | unit | ||
---|---|---|---|
abbreviation | name | symbol | name |
C | complexity | [math]\small\mathsf{(C)}[/math] | complexity weight |
EC | Euclideanized complexity | [math]\small\mathsf{(EC)}[/math] | Euclideanized-complexity weight |
S | simplicity | [math]\small\mathsf{(S)}[/math] | simplicity weight |
ES | Euclideanized simplicity | [math]\small\mathsf{(ES)}[/math] | Euclideanized-simplicity weight |
Advanced
Objects
equivalent expressions | variable | name | units | shape | type | EBK notation | subobjects | notes | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
unreduced | reduced | read as | unreduced | reduced | numeric | structural | row-first | col-first | row | col | diag | entry | ||||
mapping | ||||||||||||||||
[math]\textbf{i}[/math] | (just) interval | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, 1)[/math] | integer | vector | [...โฉ | [math]\mathrm{i}_i[/math] | specific type: vector (prime-count vector or PC-vector)
jargon name: monzo | |||||||
[math]M[/math] | (temperament) mapping (matrix) | [math]\small ๐ด[/math]/[math]\small ๐ฝ[/math] | generators per prime | [math]\scriptsize (r, d)[/math] | integer | matrix | [โจ...] ...} | โจ[...} ...] | [math]๐_i[/math] | [math]m_{ij}[/math] | jargon name: val list | |||||
[math]M\textbf{i}[/math] | [math]\textbf{y}[/math] | mapped interval | [math]\scriptsize \begin{array} {c} M \\[-2pt] ๐ด \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \textbf{i} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\small ๐ด[/math] | generators | [math]\scriptsize \!\! \begin{array} {c} M \\[-3pt] (r, \cancel{d}) \end{array} \!\! \begin{array} {c} \textbf{i} \\[-3pt] (\cancel{d}, 1) \end{array} \!\! [/math] | [math]\scriptsize (r, 1)[/math] | integer | vector | [...} | specific type: generator-count vector (GC-vector)
jargon name: tmonzo; mnemonic: [math]\textbf{y}[/math]nterval | |||||
[math]๐[/math] | (temperament) map | [math]\small ๐ด[/math]/[math]\small ๐ฝ[/math] | generators per prime | [math]\scriptsize (1, d)[/math] | integer | vector | โจ...] | [math]m_i[/math] | jargon name: val | |||||||
[math]n + r[/math] | [math]d[/math] | dimensionality | [math]\scriptsize (1, 1)[/math] | integer | scalar | |||||||||||
[math]d - n[/math] | [math]r[/math] | rank | [math]\scriptsize (1, 1)[/math] | integer | scalar | |||||||||||
[math]d - r[/math] | [math]n[/math] | nullity | [math]\scriptsize (1, 1)[/math] | integer | scalar | |||||||||||
tuning | ||||||||||||||||
[math]\slant{\mathbf{1}}L[/math] | [math]{\large\textbf{๐}}\hspace{2mu}[/math] | log-prime map | [math]\small\mathsf{oct}[/math]/[math]\small ๐ฝ[/math] | octaves per prime | [math]\scriptsize (1, d)[/math] | real | vector | โจ...] | [math]{\large ๐}\hspace{2mu}_i[/math] | |||||||
[math]1200ร\slant{\mathbf{1}}LG_{\text{j}}M_{\text{j}} \\ 1200ร\slant{\mathbf{1}}L \\ ๐_{\text{j}}M_{\text{j}}[/math] | [math]๐[/math] | just(-prime) tuning map | [math]\scriptsize \begin{array} {c} 1200 \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{\mathsf{oct}} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \slant{\mathbf{1}} \\[-2pt] \cancel{\mathsf{oct}} \hspace{-2mu} / \hspace{-2mu} \cancel{\mathsf{oct}} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} L \\[-2pt] \cancel{\mathsf{oct}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \\ \scriptsize \quad \begin{array} {c} G_{\text{j}} \\[-2pt] \cancel{๐ฝ} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ด} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} M_{\text{j}} \\[-2pt] \cancel{๐ด} \hspace{-2mu} / \hspace{-2mu} ๐ฝ \end{array} [/math] | [math]\mathsf{ยข}[/math]/[math]\small ๐ฝ[/math] | cents per prime | [math]\scriptsize \!\! \begin{array} {c} 1200 \\[-3pt] (1, \cancel{1}) \end{array} \!\! \begin{array} {c} \slant{\mathbf{1}} \\[-3pt] (\cancel{1}, \cancel{d}) \end{array} \!\! \begin{array} {c} L \\[-3pt] (\cancel{d}, \cancel{d}) \end{array} \\ \scriptsize \quad \!\! \begin{array} {c} G_{\text{j}} \\[-3pt] (\cancel{d}, \cancel{r}) \end{array} \!\! \begin{array} {c} M_{\text{j}} \\[-3pt] (\cancel{r}, d) \end{array} \!\! [/math] | [math]\scriptsize (1, d_{\text{p}})[/math] | real | vector | โจ...] | [math]j_i[/math] | |||||
[math]1200ร\slant{\mathbf{1}}LG[/math] | [math]๐[/math] | generator tuning map | [math]\scriptsize \begin{array} {c} 1200 \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{\mathsf{oct}} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \slant{\mathbf{1}} \\[-2pt] \cancel{\mathsf{oct}} \hspace{-2mu} / \hspace{-2mu} \cancel{\mathsf{oct}} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} L \\[-2pt] \cancel{\mathsf{oct}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \\ \scriptsize \quad \begin{array} {c} G \\[-2pt] \cancel{๐ฝ} \hspace{-2mu} / \hspace{-2mu} ๐ด \end{array} [/math] | [math]\mathsf{ยข}[/math]/[math]\small ๐ด[/math] | cents per generator | [math]\scriptsize \!\! \begin{array} {c} 1200 \\[-3pt] (1, \cancel{1}) \end{array} \!\! \begin{array} {c} \slant{\mathbf{1}} \\[-3pt] (\cancel{1}, \cancel{d}) \end{array} \!\! \begin{array} {c} L \\[-3pt] (\cancel{d}, \cancel{d}) \end{array} \\ \scriptsize \quad \!\! \begin{array} {c} G \\[-3pt] (\cancel{d}, r) \end{array} \!\! [/math] | [math]\scriptsize (1, r)[/math] | real | vector | {...] | [math]g_i[/math] | |||||
[math]1200ร\slant{\mathbf{1}}LGM \\ 1200ร\slant{\mathbf{1}}LP \\ ๐M[/math] | [math]๐[/math] | (tempered-prime) tuning map | [math]\scriptsize \begin{array} {c} 1200 \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{\mathsf{oct}} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \slant{\mathbf{1}} \\[-2pt] \cancel{\mathsf{oct}} \hspace{-2mu} / \hspace{-2mu} \cancel{\mathsf{oct}} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} L \\[-2pt] \cancel{\mathsf{oct}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \\ \scriptsize \quad \begin{array} {c} G \\[-2pt] \cancel{๐ฝ} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ด} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} M \\[-2pt] \cancel{๐ด} \hspace{-2mu} / \hspace{-2mu} ๐ฝ \end{array} [/math] | [math]\mathsf{ยข}[/math]/[math]\small ๐ฝ[/math] | cents per prime | [math]\scriptsize \!\! \begin{array} {c} 1200 \\[-3pt] (1, \cancel{1}) \end{array} \!\! \begin{array} {c} \slant{\mathbf{1}} \\[-3pt] (\cancel{1}, \cancel{d}) \end{array} \!\! \begin{array} {c} L \\[-3pt] (\cancel{d}, \cancel{d}) \end{array} \\ \scriptsize \quad \!\! \begin{array} {c} G \\[-3pt] (\cancel{d}, \cancel{r}) \end{array} \!\! \begin{array} {c} M \\[-3pt] (\cancel{r}, d) \end{array} \!\! [/math] | [math]\scriptsize (1, d)[/math] | real | vector | โจ...] | [math]t_i[/math] | |||||
[math]๐ - ๐ \\ 1200ร\slant{\mathbf{1}}L(P - I)[/math] | [math]๐[/math] | retuning (or mistuning) map | [math]\mathsf{ยข}[/math]/[math]\small ๐ฝ[/math] | cents per prime | [math]\scriptsize (1, d)[/math] | real | vector | โจ...] | [math]r_i[/math] | previous name: prime error map | ||||||
[math]๐\textbf{i}[/math] | [math]\mathrm{o}[/math] | (just) (interval) size | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \textbf{i} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \textbf{i} \\[-3pt] (\cancel{d}, 1) \end{array} \!\! [/math] | [math]\scriptsize (1, 1)[/math] | real | scalar | mnemonic: [math]\mathrm{o}[/math]riginal size | ||||||
[math]๐M\textbf{i} \\ ๐\textbf{i}[/math] | [math]\mathrm{a}[/math] | tempered (interval) size | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \textbf{i} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \textbf{i} \\[-3pt] (\cancel{d}, 1) \end{array} \!\! [/math] | [math]\scriptsize (1, 1)[/math] | real | scalar | mnemonic: [math]\mathrm{a}[/math]ltered size | ||||||
[math]๐\textbf{i} - ๐\textbf{i} \\ a - o \\ ๐\textbf{i}[/math] | [math]\mathrm{e}[/math] | (interval) error | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \textbf{i} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \textbf{i} \\[-3pt] (\cancel{d}, 1) \end{array} \!\! [/math] | [math]\scriptsize (1, 1)[/math] | real | scalar | |||||||
optimization | ||||||||||||||||
[math]p[/math] | optimization power | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||||
[math]โช\,ยท\,โซ_p[/math] | power mean ([math]p[/math]-mean) | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||||
damage | ||||||||||||||||
[math]c[/math] | complexity | (see complexities section of complexities and simplicities table) | [math]\scriptsize (1, 1)[/math] | real | scalar | |||||||||||
[math]\dfrac1c[/math] | [math]s[/math] | simplicity | (see simplicities section of complexities and simplicities table) | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||
[math]c[/math] or [math]s[/math] | [math]w[/math] | weight | (see complexities and simplicities table) | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||
[math]|\mathrm{e}|w[/math] | [math]\mathrm{d}[/math] | damage | (see damages table) | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||
target-intervals | ||||||||||||||||
[math]\mathrm{T}[/math] | target-interval list | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, k)[/math] | integer | matrix | [[...โฉ ...] | [math]\textbf{t}_i[/math] | [math]\mathrm{t}_{ij}[/math] | |||||||
[math]M\mathrm{T}[/math] | [math]\mathrm{Y}[/math] | mapped target-interval list | [math]\scriptsize \begin{array} {c} M \\[-2pt] ๐ด \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \mathrm{T} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\small ๐ด[/math] | generators | [math]\scriptsize \!\! \begin{array} {c} M \\[-3pt] (r, \cancel{d}) \end{array} \!\! \begin{array} {c} \mathrm{T} \\[-3pt] (\cancel{d}, k) \end{array} \!\! [/math] | [math]\scriptsize (r, k)[/math] | integer | matrix | [[...} ...] | [math]\textbf{y}_i[/math] | [math]\mathrm{y}_{ij}[/math] | mnemonic: looks like bent-up 'T', or cross between 'M' and 'T' | |||
[math]๐\mathrm{T}[/math] | [math]\textbf{o}[/math] | target-interval (just) size list | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \mathrm{T} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \mathrm{T} \\[-3pt] (\cancel{d}, k) \end{array} \!\! [/math] | [math]\scriptsize (1, k)[/math] | real | list | [...] | [math]\mathrm{o}_i[/math] | mnemonic: [math]\textbf{o}[/math]riginal size list | ||||
[math]๐\mathrm{T}[/math] | [math]\textbf{a}[/math] | tempered target-interval size list | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \mathrm{T} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \mathrm{T} \\[-3pt] (\cancel{d}, k) \end{array} \!\! [/math] | [math]\scriptsize (1, k)[/math] | real | list | [...] | [math]\mathrm{a}_i[/math] | mnemonic: [math]\textbf{a}[/math]ltered size list | ||||
[math]๐\mathrm{T} - ๐\mathrm{T} \\ ๐\mathrm{T} \\ \textbf{a} - \textbf{o}[/math] | [math]\textbf{e}[/math] | target-interval error list | [math]\scriptsize \begin{array} {c} ๐ \\[-2pt] {\small\mathsf{ยข}} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \mathrm{T} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\mathsf{ยข}[/math] | cents | [math]\scriptsize \!\! \begin{array} {c} ๐ \\[-3pt] (1, \cancel{d}) \end{array} \!\! \begin{array} {c} \mathrm{T} \\[-3pt] (\cancel{d}, k) \end{array} \!\! [/math] | [math]\scriptsize (1, k)[/math] | real | list | [...] | [math]\mathrm{e}_i[/math] | |||||
[math]C[/math] or [math]S[/math] | [math]W[/math] | target-interval weight matrix | (see complexities and simplicities table) | [math]\scriptsize (k, k)[/math] | real | matrix | [[...] ...] | [math]๐[/math] | [math]w_i[/math] or [math]w_{ij}[/math] | |||||||
[math]C[/math] | target-interval complexity weight matrix | (see complexities section of complexities and simplicities table) | [math]\scriptsize (k, k)[/math] | real | matrix | [[...] ...] | [math]๐[/math] | [math]c_i[/math] | ||||||||
[math]\dfrac1C[/math] | [math]S[/math] | target-interval simplicity weight matrix | (see simplicities section of complexities and simplicities table) | [math]\scriptsize (k, k)[/math] | real | matrix | [[...] ...] | [math]๐[/math] | [math]s_i[/math] | entrywise reciprocal of [math]C[/math] | ||||||
[math]|\textbf{e}|W \\ 1200ร\slant{\mathbf{1}}L|P - I|\mathrm{T}W[/math] | [math]\textbf{d}[/math] | target-interval damage list | (see damages table) | [math]\scriptsize (1, k)[/math] | real | list | [...] | [math]\mathrm{d}_i[/math] | ||||||||
[math]k[/math] | target-interval count | [math]\scriptsize (1, 1)[/math] | integer | scalar | mnemonic: [math]k[/math]ount | |||||||||||
held-intervals | ||||||||||||||||
[math]\mathrm{H}[/math] | held-interval basis | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, h)[/math] | matrix | [[...โฉ ...] | [math]\textbf{h}_i[/math] | [math]\mathrm{h}_{ij}[/math] | ||||||||
[math]h[/math] | held-interval count | [math]\scriptsize (1, 1)[/math] | integer | scalar | ||||||||||||
exploring temperaments | ||||||||||||||||
[math]\mathrm{C}[/math] | comma basis | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, n)[/math] | integer | matrix | [[...โฉ ...] | [math]\textbf{c}_i[/math] | [math]\mathrm{c}_{ij}[/math] | jargon name: monzo list | ||||||
[math]\textbf{c}[/math] | comma | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, 1)[/math] | integer | vector | [...โฉ | [math]\mathrm{c}_i[/math] | specific type: vector (prime-count vector or PC-vector) | |||||||
computation | ||||||||||||||||
[math]\llzigzagยท\,\rrzigzag\!_p[/math] | power sum ([math]p[/math]-sum) | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||||
all-interval tuning schemes | ||||||||||||||||
[math]\mathrm{I}[/math] | [math]\mathrm{T}_{\text{p}}[/math] | prime proxy target-interval list | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, d)[/math] | integer | matrix | โจ[...โฉ ...] | [math]\slant{\mathbf{1}}[/math] | |||||||
[math]X[/math] | complexity pretransformer | [math]\small\mathsf{๐}\scriptsize\mathsf{(C)}[/math] or [math]\small\mathsf{๐}\scriptsize\mathsf{(}[/math]<alt>-[math]\scriptsize\mathsf{C)}[/math][6] | [math]\small\mathsf{(C)}[/math] or [math]\small\mathsf{(}[/math]<alt>-[math]\small\mathsf{C)}[/math] | complexity weight or <alternative>-complexity weight | [math]\scriptsize (d, d)[/math] or [math]\scriptsize (d+1, d+1)[/math] | real | matrix | [โจ...] ...โฉ | [math]๐_i[/math] | [math]๐[/math] | [math]x_i[/math] or [math]x_{ij}[/math] | |||||
[math]\text{diag}({\large\textbf{๐}}\hspace{2mu})[/math] | [math]L[/math] | log-prime matrix | [math]\small\mathsf{oct}[/math]/[math]\small ๐ฝ[/math] | octaves per prime | [math]\scriptsize (d, d)[/math] | real | matrix | [โจ...] ...โฉ | โจ[...โฉ ...] | [math]{\large\textbf{๐}}\hspace{2mu}_i[/math] | [math]{\large\textbf{๐}}\hspace{2mu}[/math] | [math]{\large ๐}\hspace{2mu}_{ij}[/math] | ||||
[math]q[/math] | interval complexity norm power | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||||
[math]โ ยท โ_q[/math] | power norm ([math]p[/math]-norm) | [math]\scriptsize (1, 1)[/math] | real | scalar | ||||||||||||
[math]\dfrac1{1-\frac1q}[/math] | [math]\text{dual}(q)[/math] | dual norm power | [math]\scriptsize (1, 1)[/math] | real | scalar | |||||||||||
[math]โX\mathbf{i}โ_q[/math] | interval complexity | [math]\small\mathsf{(C)}[/math] or [math]\small\mathsf{(}[/math]<alt>-[math]\small\mathsf{C)}[/math] | [math]\scriptsize (1, 1)[/math] | real | scalar | |||||||||||
[math]โ๐X^{-1}โ_{\text{dual}(q)}[/math] | retuning magnitude | [math]\mathsf{ยข}\small\mathsf{(C^{-1})}[/math] or [math]\mathsf{ยข}\small\mathsf{(}[/math]<alt>-[math]\small\mathsf{C^{-1})}[/math] | [math]\scriptsize (1, 1)[/math] | real | scalar | |||||||||||
alternative complexities | ||||||||||||||||
[math]๐[/math] | prime list[7] | [math]\scriptsize (1, d)[/math] | integer | list | [...] | [math]p_i[/math] | ||||||||||
[math]\slant{\mathbf{1}}[/math] | summation map | [math]\scriptsize (1, d)[/math] | integer | vector | โจ...] | [math]1[/math] | ||||||||||
[math]1200[/math] | octaves-to-cents conversion | ยข/oct | cents per octave | [math]\scriptsize (1, 1)[/math] | integer | scalar | ||||||||||
[math]Z[/math] | size-sensitizing matrix | [math]\scriptsize (d+1, d)[/math] | real | matrix | [โจโฆ]...] | [math]๐_i[/math] | [math]z_{ij}[/math] | |||||||||
non-standard domain bases | ||||||||||||||||
[math]B_s[/math] | (domain) basis (change) matrix | [math]\small ๐ฝ[/math]/[math]\small ๐ฏ[/math] | primes per nonprime basis elements | [math]\scriptsize (d_p, d_b)[/math] | integer | matrix | [[...] ...] | [[...] ...] | [math]b_i[/math] | [math]b_{ij}[/math] | ||||||
[math]B_{Ls}[/math] | [math]\small ๐[/math]/[math]\small ๐ฏ[/math] | superspace basis elements per (subspace) basis elements | [math]\scriptsize (d_L, d_s)[/math] | |||||||||||||
embedding and projection | ||||||||||||||||
[math]G[/math] | generator embedding (matrix) | [math]\small ๐ฝ[/math]/[math]\small ๐ด[/math] | primes per generator | [math]\scriptsize (d, r)[/math] | real | matrix | [{...] ...โฉ | {[...โฉ ...] | [math]๐_i[/math] | [math]g_{ij}[/math] | ||||||
[math]G_cF^{-1}FM_c \\ \mathrm{V}\textit{ฮ}\mathrm{V}^{-1}[/math] | [math]P[/math] | projection (matrix) | [math]\scriptsize \begin{array} {c} G \\[-2pt] ๐ฝ \hspace{-2mu} / \hspace{-2mu} \cancel{๐ด} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} M \\[-2pt] \cancel{๐ด} \hspace{-2mu} / \hspace{-2mu} ๐ฝ \end{array} [/math] | [math]\small ๐ฝ[/math]/[math]\small ๐ฝ[/math] | primes per prime | [math]\scriptsize \!\! \begin{array} {c} G \\[-3pt] (d, \cancel{r}) \end{array} \!\! \begin{array} {c} M \\[-3pt] (\cancel{r}, d) \end{array} \!\! [/math] | [math]\scriptsize (d, d)[/math] | real | matrix | [โจ...] ...โฉ | โจ[...โฉ ...] | [math]๐_i[/math] | [math]p_i[/math] | |||
[math]GM\textbf{i}[/math] | [math]P\textbf{i}[/math] | projected interval | [math]\scriptsize \begin{array} {c} G \\[-2pt] ๐ฝ \hspace{-2mu} / \hspace{-2mu} \cancel{๐ด} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} M \\[-2pt] \cancel{๐ด} \hspace{-2mu} / \hspace{-2mu} \cancel{๐ฝ} \end{array} \begin{array} {c} \\[-2pt] ยท \end{array} \begin{array} {c} \textbf{i} \\[-2pt] \cancel{๐ฝ} \end{array} [/math] | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize \!\! \begin{array} {c} G \\[-3pt] (d, \cancel{r}) \end{array} \!\! \begin{array} {c} M \\[-3pt] (\cancel{r}, \cancel{d}) \end{array} \!\! \begin{array} {c} \textbf{i} \\[-3pt] (\cancel{d}, 1) \end{array} \!\! [/math] | [math]\scriptsize (d, 1)[/math] | real | vector | [...โฉ | specific type: vector (prime-count vector or PC-vector) | |||||
[math]\mathrm{U}[/math] | unchanged-interval basis | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, r)[/math] | matrix | [[...โฉ ...] | [math]\textbf{u}_i[/math] | [math]\mathrm{u}_{ij}[/math] | jargon name: eigenmonzo list | |||||||
[math]\textit{ฮ}[/math] | scaling factor (eigenvalue) matrix | [math]\scriptsize (d, d)[/math] | matrix | [โจโฆ] โฆโฉ | โจ[โฆโฉ โฆ] | [math]๐[/math] | [math]ฮป_i[/math] | mnemonic: [math]\mathrm{V}[/math] is mirrored of [math]\textit{ฮ}[/math] which it combines with to create the projection matrix; previous name: eigenvalue matrix | ||||||||
[math]\mathrm{V}[/math] | unrotated vector (eigenvector) list | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (d, d)[/math] | matrix | โจ[...โฉ ...] | [math]\textbf{v}_i[/math] | [math]\mathrm{v}_{ij}[/math] | mnemonic: [math]\mathrm{V}[/math] is mirrored of [math]\textit{ฮ}[/math] which it combines with to create the projection matrix; jargon name: eigenmonzo and comma list | |||||||
[math]F[/math] | generator form matrix | [math]\scriptsize (r, r)[/math] | matrix | [{...] โฆ} | [math]๐_i[/math] | [math]f_{ij}[/math] | ||||||||||
[math]I[/math] | [math]M_{\text{j}}[/math] | JI mapping (matrix) | [math]\small ๐ด[/math]/[math]\small ๐ฝ[/math] | generators per prime | [math]\scriptsize (d, d)[/math] | integer | matrix | [โจ...] ...} | โจ[...} ...] | [math]\slant{\mathbf{1}}[/math] | ||||||
[math]I[/math] | [math]G_{\text{j}}[/math] | JI generator embedding (matrix) | [math]\small ๐ฝ[/math]/[math]\small ๐ด[/math] | primes per generator | [math]\scriptsize (d, d)[/math] | integer | matrix | [{...] ...โฉ | {[...โฉ ...] | [math]\slant{\mathbf{1}}[/math] | ||||||
[math]K[/math] | constraint (matrix) | [math]\scriptsize (k, r)[/math] | [math]\scriptsize \{0, +1, -1\}[/math] | matrix | [[...] ...] | [math]๐_i[/math] | [math]k_{ij}[/math] | mnemonic: [math]K[/math]onstraint | ||||||||
[math]๐[/math] | (generator tuning map) blend map | [math]\scriptsize (1, ฯ-1)[/math] | real | vector | [...] | [math]b_i[/math] | ||||||||||
[math]B[/math] | (generator tuning map) blend matrix | [math]\scriptsize (d, ฯ-1)[/math] | real | matrix | [[...โฉ...] | [math]๐_{i}[/math] | [math]b_{ij}[/math] | |||||||||
[math]D[/math] | (generator tuning map) deltas matrix | [math]\mathsf{ยข}[/math]/[math]\small ๐ด[/math] | cents per generator | [math]\scriptsize (ฯ-1,r)[/math] | real | matrix | [{...] ...] | [math]๐น_i[/math] | [math]๐ฟ_{ij}[/math] | |||||||
[math]ฯ[/math] | tied basic minimax tuning count | integer | scalar | |||||||||||||
exterior algebra | ||||||||||||||||
[math]๐[/math] | multimap | [math]\small ๐ด[/math]/[math]\small ๐ฝ[/math] | generators per prime | [math]\scriptsize (1, d)[/math] | integer | multivector | โจ...] or โจโจ...]] or โจโจโจ...]]] ... | [math]๐_i[/math] | ||||||||
[math]๐[/math] | multicomma | [math]\small ๐ฝ[/math] | primes | [math]\scriptsize (1, n)[/math] | integer | multivector | [...โฉ or [[...โฉโฉ or [[[...โฉโฉโฉ ... | [math]๐_i[/math] | ||||||||
[math]๐ง[/math] | (generic temperament multivector) | [math]\scriptsize (1, {{d}\choose{r}})[/math] or [math]\scriptsize (1, {{d}\choose{n}})[/math] | integer | multivector | โจ...] or โจโจ...]] or โจโจโจ...]]] ... | [...โฉ or [[...โฉโฉ or [[[...โฉโฉโฉ ... | [math]๐ง_i[/math] | |||||||||
[math]A[/math] | (generic temperament matrix) | [math]\scriptsize (g, d)[/math] or [math]\scriptsize (d, g)[/math] | integer | matrix | [โจ...] ...} | โจ[...} ...] or [[...โฉ ...] | [math]๐_i[/math] | [math]๐_i[/math] | [math]๐[/math] | [math]a_{ij}[/math] | ||||||
[math]v[/math] | variance | |||||||||||||||
[math]g[/math] | grade | [math]\scriptsize (1, 1)[/math] | integer | scalar | ||||||||||||
temperament addition | ||||||||||||||||
[math]\min(r, n)[/math] | [math]g_\text{min}[/math] | min-grade | [math]\scriptsize (1, 1)[/math] | integer | scalar | |||||||||||
[math]\max(r, n)[/math] | [math]g_\text{max}[/math] | max-grade | [math]\scriptsize (1, 1)[/math] | integer | scalar | |||||||||||
[math]L_\text{dep}[/math] | linear-dependence basis | [math]\scriptsize (l_\text{dep}, d)[/math] or [math]\scriptsize (d, l_\text{dep})[/math] | integer | matrix | [โจ...]] or [[...] ...โฉ | โจ[...]] or [[...โฉ ...] | [math]{\large\textbf{๐}}\hspace{2mu}_{\text{dep}i}[/math] | [math]{\large\textbf{๐}}\hspace{2mu}_{\text{dep}i}[/math] | [math]{\large\textbf{๐}}\hspace{2mu}_\text{dep}[/math] | [math]{\large ๐}\hspace{2mu}_{\text{dep}ij}[/math] | ||||||
[math]L_\text{ind}[/math] | linear-independence basis | [math]\scriptsize (l_\text{ind}, d)[/math] or [math]\scriptsize (d, l_\text{ind})[/math] | integer | matrix | [โจ...]] or [[...] ...โฉ | โจ[...]] or [[...โฉ ...] | [math]{\large\textbf{๐}}\hspace{2mu}_{\text{ind}i}[/math] | [math]{\large\textbf{๐}}\hspace{2mu}_{\text{ind}i}[/math] | [math]{\large\textbf{๐}}\hspace{2mu}_\text{ind}[/math] | [math]{\large ๐}\hspace{2mu}_{\text{ind}ij}[/math] | ||||||
[math]\dim(L_\text{dep})[/math] | [math]l_\text{dep}[/math] | linear-dependence | [math]\scriptsize (1, 1)[/math] | integer | scalar | |||||||||||
[math]\dim(L_\text{ind})[/math] | [math]l_\text{ind}[/math] | linear-independence | [math]\scriptsize (1, 1)[/math] | integer | scalar |
Units
symbol | name | vectorized |
---|---|---|
[math]\small ๐ด[/math] | generators | yes |
[math]\small ๐ฝ[/math] | primes | yes |
[math]\small ๐ฏ[/math] | (subspace) basis elements | yes |
[math]\small ๐[/math] | superspace basis elements | yes |
[math]\mathsf{ยข}[/math] | cents | |
[math]\mathsf{ยข}\small{(}[/math]<weight>[math]\small\mathsf{)}[/math] | weighted cents | |
[math]\small\mathsf{oct}[/math] | octaves |
Tuning schemes
retuning (or mistuning) magnitude | damage | target
intervals |
systematic name | previously named tuning schemes that are specific types of this tuning scheme | of interest? | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
weight | optimization | |||||||||||||||||||||
interval complexity | slope | initial | name | power | ||||||||||||||||||
norm pretransformer | norm power | norm pretransformer | norm power | initial | name | multiplier | ||||||||||||||||
initial | name | multiplier | initial | name | power | initial | name | multiplier | initial | name | power | abbreviated | read ("____ tuning scheme") | |||||||||
<none> | <n/a> | maximum | โ | <none> | (t) | taxicab | 1 | S | simplicity-weight | 1/complexity | <n/a> | minimax | โ | all | minimax-S | minimax simplicity-weight damage | "TOP"/"T1"/"TIPTOP"*, "CTOP", "POTOP"/"POTT"* | yes | ||||
<various> | <various> | minimax-<alt>-S | minimax <alternative>-simplicity-weight damage | "BOP", "Weil", "Kees" | yes | |||||||||||||||||
<none> | Euclidean | 2 | <none> | E | Euclidean | 2 | minimax-ES | minimax Euclideanized-simplicity-weight damage | "TE"/"T2"/"TOP-RMS", "CTE", "POTE" | yes | ||||||||||||
<various> | <various> | minimax-E-<alt>-S | minimax Euclideanized-<alternative>-simplicity-weight damage | "Frobenius", "BE", "WE", "KE" | yes | |||||||||||||||||
<n/a> | <n/a> | U | unity-weight | <none> | <set> | <set> minimax-U | <set> minimax unity-weight damage | "minimax" | yes | |||||||||||||
<none> | (t) | taxicab | 1 | S | simplicity-weight | 1/complexity | <set> minimax-S | <set> minimax simplicity-weight damage | yes | |||||||||||||
<various> | <set> minimax-<alt>-S | <set> minimax <alternative>-simplicity-weight damage | ||||||||||||||||||||
<none> | E | Euclidean | 2 | <set> minimax-ES | <set> minimax Euclideanized-simplicity-weight damage | |||||||||||||||||
<various> | <set> minimax-E-<alt>-S | <set> minimax Euclideanized-<alternative>-simplicity-weight damage | ||||||||||||||||||||
<none> | (t) | taxicab | 1 | C | complexity-weight | complexity | <set> minimax-C | <set> minimax complexity-weight damage | yes | |||||||||||||
<various> | <set> minimax-<alt>-C | <set> minimax <alternative>-complexity-weight damage | ||||||||||||||||||||
<none> | E | Euclidean | 2 | <set> minimax-EC | <set> minimax Euclideanized-complexity-weight damage | |||||||||||||||||
<various> | <set> minimax-E-<alt>-C | <set> minimax Euclideanized-<alternative>-complexity-weight damage | ||||||||||||||||||||
<n/a> | U | unity-weight | <none> | miniRMS | 2 | <set> miniRMS-U | <set> miniRMS unity-weight damage | "least squares" | yes | |||||||||||||
<none> | (t) | taxicab | 1 | S | simplicity-weight | 1/complexity | <set> miniRMS-S | <set> miniRMS simplicity-weight damage | yes | |||||||||||||
<various> | <set> miniRMS-<alt>-S | <set> miniRMS <alternative>-simplicity-weight damage | ||||||||||||||||||||
<none> | E | Euclidean | 2 | <set> miniRMS-ES | <set> miniRMS Euclideanized-simplicity-weight damage | |||||||||||||||||
<various> | <set> miniRMS-E-<alt>-S | <set> miniRMS Euclideanized-<alternative>-simplicity-weight damage | ||||||||||||||||||||
<none> | (t) | taxicab | 1 | C | complexity-weight | complexity | <set> miniRMS-C | <set> miniRMS complexity-weight damage | yes | |||||||||||||
<various> | <set> miniRMS-<alt>-C | <set> miniRMS <alternative>-complexity-weight damage | ||||||||||||||||||||
<none> | E | Euclidean | 2 | <set> miniRMS-EC | <set> miniRMS Euclideanized-complexity-weight damage | |||||||||||||||||
<various> | <set> miniRMS-E-<alt>-C | <set> miniRMS Euclideanized-<alternative>-complexity-weight damage | ||||||||||||||||||||
<n/a> | U | unity-weight | <none> | miniaverage | 1 | <set> miniaverage-U | <set> miniaverage unity-weight damage | yes | ||||||||||||||
<none> | (t) | taxicab | 1 | S | simplicity-weight | 1/complexity | <set> miniaverage-S | <set> miniaverage simplicity-weight damage | yes | |||||||||||||
<various> | <set> miniaverage-<alt>-S | <set> miniaverage <alternative>-simplicity-weight damage | ||||||||||||||||||||
<none> | E | Euclidean | 2 | <set> miniaverage-ES | <set> miniaverage Euclideanized-simplicity-weight damage | |||||||||||||||||
<various> | <set> miniaverage-E-<alt>-S | <set> miniaverage Euclideanized-<alternative>-simplicity-weight damage | ||||||||||||||||||||
<none> | (t) | taxicab | 1 | C | complexity-weight | complexity | <set> miniaverage-C | <set> miniaverage complexity-weight damage | yes | |||||||||||||
<various> | <set> miniaverage-<alt>-C | <set> miniaverage <alternative>-complexity-weight damage | ||||||||||||||||||||
<none> | E | Euclidean | 2 | <set> miniaverage-EC | <set> miniaverage Euclideanized-complexity-weight damage | |||||||||||||||||
<various> | <set> miniaverage-E-<alt>-C | <set> miniaverage Euclideanized-<alternative>-complexity-weight damage |
Damages
quantity | unit | ||
---|---|---|---|
abbreviation | name | symbol | name |
U-damage | unity-weight damage | [math]\mathsf{ยข}\small\mathsf{(U)}[/math] | unity-weighted cents |
C-damage | complexity-weight damage | [math]\mathsf{ยข}\small\mathsf{(C)}[/math] | complexity-weighted cents |
<alt>-C-damage | <alternative>-complexity-weight damage | [math]\mathsf{ยข}[/math][math]\small\mathsf{(}[/math]<alt>-[math]\small\mathsf{C)}[/math] | <alternative>-complexity-weighted cents |
EC-damage | Euclideanized-complexity-weight damage | [math]\mathsf{ยข}[/math][math]\small\mathsf{(EC)}[/math] | Euclideanized-complexity-weighted cents |
E-<alt>-C-damage | Euclideanized-<alternative>-complexity-weight damage | [math]\mathsf{ยข}[/math][math]\small\mathsf{(E}[/math]-<alt>-[math]\small\mathsf{C)}[/math] | Euclideanized-<alternative>-complexity-weighted cents |
S-damage | simplicity-weight damage | [math]\mathsf{ยข}\small\mathsf{(S)}[/math] | simplicity-weighted cents |
<alt>-S-damage | <alternative>-simplicity-weight damage | [math]\mathsf{ยข}[/math][math]\small\mathsf{(}[/math]<alt>-[math]\small\mathsf{S)}[/math] | <alternative>-simplicity-weighted cents |
ES-damage | Euclideanized-simplicity-weight damage | [math]\mathsf{ยข}[/math][math]\small\mathsf{(ES)}[/math] | Euclideanized-simplicity-weighted cents |
E-<alt>-S-damage | Euclideanized-<alternative>-simplicity-weight damage | [math]\mathsf{ยข}[/math][math]\small\mathsf{(E}[/math]-<alt>-[math]\small\mathsf{S)}[/math] | Euclideanized-<alternative>-simplicity-weighted cents |
Complexity and simplicity
quantity | unit | ||
---|---|---|---|
abbreviation | name | unit | name |
C | complexity | [math]\small\mathsf{๐}\scriptsize\mathsf{(C)}[/math] = [math]\small\mathsf{(C)}[/math] | complexity weight |
<alt>-C | <alternative> complexity | [math]\small\mathsf{๐}\scriptsize\mathsf{(}[/math]<alt>-[math]\scriptsize\mathsf{C)}[/math] = [math]\small\mathsf{(}[/math]<alt>-[math]\small\mathsf{C)}[/math] | <alternative>-complexity weight |
EC | Euclideanized complexity | [math]\small\mathsf{๐}\scriptsize\mathsf{(EC)}[/math] = [math]\small\mathsf{(EC)}[/math] | Euclideanized-complexity weight |
E-<alt>-C | Euclideanized-<alternative> complexity | [math]\small\mathsf{๐}\scriptsize\mathsf{(E}[/math]-<alt>-[math]\scriptsize\mathsf{C)}[/math] = [math]\small\mathsf{(E}[/math]-<alt>-[math]\small\mathsf{C)}[/math] | Euclideanized-<alternative>-complexity weight |
S | simplicity | [math]\small\mathsf{๐}\scriptsize\mathsf{(S)}[/math] = [math]\small\mathsf{(S)}[/math] | simplicity weight |
<alt>-S | <alternative> simplicity | [math]\small\mathsf{๐}\scriptsize\mathsf{(}[/math]<alt>-[math]\scriptsize\mathsf{S)}[/math] = [math]\small\mathsf{(}[/math]<alt>-[math]\small\mathsf{S)}[/math] | <alternative>-simplicity weight |
ES | Euclideanized simplicity | [math]\small\mathsf{๐}\scriptsize\mathsf{(ES)}[/math] = [math]\small\mathsf{(ES)}[/math] | Euclideanized-simplicity weight |
E-<alt>-S | Euclideanized-<alternative> simplicity | [math]\small\mathsf{๐}\scriptsize\mathsf{(E}[/math]-<alt>-[math]\scriptsize\mathsf{S)}[/math] = [math]\small\mathsf{(E}[/math]-<alt>-[math]\small\mathsf{S)}[/math] | Euclideanized-<alternative>-simplicity weight |
WinCompose
Are you tired of every time web-searching for and copy-pasting special characters that you use over and over in RTT discussions, or would like to use if only it were easy, such as โฏ, โญ, ยข, โ, ยฐ, โ, ร, โปยน, โฉ, โ, and ฯ? Well, try WinCompose! This tool lets you communicate about these ideas without disrupting your train of thought, by typing these characters with simple and memorable key sequences. These sequences always begin with your chosen Compose-key, which defaults to being your right Alt key. When describing these sequences we represent this key with the symbol โ. So for example, you type โฏ as โ##, โญ as โbb, ยข as โc/, โ as โv/, ยฐ as โ00, โ as โ-2, ร as โxx, โปยน as โ11, โฉ as โ>>, โ as โ88, and ฯ as โ8f.
For Windows users, install WinCompose then copy-paste the contents of this file: https://dkeenan.com/XCompose.txt into your user sequences (Show sequences โ User-defined sequences โ Edit). Then save and reload. You can always choose to override or add alternatives to our sequences if you find others to be more intuitive.
For Mac users, we refer you to these instructions (from the author of WinCompose) for how to set up Compose-key sequences in Mac OS: http://sam.hocevar.net/blog/category/osx/
Table of noteworthy sequences
Compose-key sequence | resulting text | description |
---|---|---|
Keyboard key symbols | ||
โโโ | โ | compose key symbol (the right alt key by default) |
โ\โฃ | โฃ | spacebar symbol |
โ\โถ๏ธ etc. | โถ๏ธ etc. | right etc. arrow key symbols |
โ\A or โ\O | โฅ | alt or option key symbol |
โ\B | โซ | backspace key symbol |
โ\C | โฒ | control key symbol |
โ\D | โฆ | delete key symbol |
โ\E | โ | escape key symbol |
โ\L | โช | caps lock key symbol |
โ\R or โ\.E or โ\\ | โ | return or enter key symbol |
โ\S | โง | shift key symbol |
โ\T | โญพ | tab key symbol |
โ() | โ | dotted circle, represents any character (such as the character preceding a combining mark) |
Double key sequences | ||
โโฃโฃ | โฏ | narrow no-break space (used between quantities and their units) |
โ.. | ยท | middle dot (used to multiply units when juxtaposition is ambiguous) |
โ:: | รท | divide sign |
โ;; | โฬฒฬ | combining overline and low line (undirected value) |
โ|| | โ | power norm bracket |
โ\\ | โ | return or enter key symbol |
โ<< | โจ | left angle bracket |
โ>> | โฉ | right angle bracket |
โ~~ | โ | approximately equal |
โ** | โ | black star |
โ'' | โฒ | prime mark |
โ11 | โปยน | power of -1 or inverse |
โ22 through โ77 | ยฒ ยณ โด โต โถ โท | squared, cubed, fourth through seventh power |
โ88 | โ | infinity |
โ00 | ยฐ | degree sign |
โnn | โฟ | superscript small n |
โ-- | โ | subscript minus sign |
โ__ | โฬฒ | combining low line (underline) |
โ== | โก | modular congruence |
โ// | โ | fraction slash (use with super and subscripts to create fractions) |
โ## | โฏ | musical sharp |
โbb | โญ | musical flat |
โdd | โ | partial derivative |
โff | ฯ | small phi symbol |
โgg | ษก | single-storey (opentail) small g |
โll | โ | script small L |
โuu | ยต | micro sign |
โxx | ร | multiplication sign |
โDD | โ | delta (small difference) operator |
โFF | ฮฆ | Greek capital phi |
โQQ | ฯ | Greek capital letter archaic qoppa (small quotient operator) |
โTT | แต | superscript capital T (matrix transpose) |
โ++ | โบ | superscript plus sign (matrix pseudoinverse) |
โโถ๏ธโถ๏ธ etc. | โ etc. | right etc. arrows |
Multiplication operators | ||
โxx | ร | multiplication sign |
โXx or โxX | โจฏ | vector or cross product (barely distinguishable from multiplication sign) |
โXX | โ | large multiplication sign (a better symbol for cross product) |
โx* | โ | star operator (prefix: tensor complement, Hodge) |
โX* | โ | asterisk operator (infix: scalar product, Dorst) |
โx. | โ | dot (product) operator |
โX. | โข | bullet (infix: fat dot product, Dorst) |
Other operators | ||
โv/ | โ | square root sign |
โ3v/ | โ | cube root sign |
โ4v/ | โ | fourth root sign |
โ-+ | โ | subscript plus sign |
โ-- | โ | subscript minus sign |
โ-= | โ | subscript equals sign |
โ++ | โบ | superscript plus sign (matrix pseudoinverse) |
โ+- or โ+= | ยฑ | plus or minus sign |
โ=+ | โ | minus or plus sign |
โ=- | โ | minus sign |
โ== | โก | modular congruence |
โ/\ | โง | logical AND, wedge product, progressive product |
โ\/ | โจ | logical OR, vee product, regressive product |
โโ/\ | โ | larger logical AND, wedge product, progressive product |
โโ\/ | โ | larger logical OR, vee product, regressive product |
โ|_ | โ | left floor (infix: right contraction, Dorst) |
โ_| | โ | right floor (infix: left contraction, Dorst) |
โ|^ | โ | left ceiling |
โ^| | โ | right ceiling |
โ'- | โจฝ | righthand interior product |
โ-' | โจผ | (lefthand) interior product |
โ-, | ยฌ | not sign (prefix: multivector complement) |
โโ<> | โ | diamond operator (prefix: multivector dual) |
โ(.) | โจ | entrywise vector multiplication operator |
โ(..) | โ | alternative entrywise vector multiplication operator |
โ(/) | โ | entrywise vector division operator |
Mathematical letter and digit prefixes | ||
โ3โ | ั | cyrillic, โ3q is ya (example) |
โ4โ | โต | hebrew, โ4a is aleph (example) |
โ5โ | ๐ | fraktur, โ5a |
โ6โ | แต ยน โฏแชฒ โธ | superscripts, โ6a โ61 โ688 โ68โฃ (not all letters, some only approximate) (same key as ^ but without shift) |
โ68โ | แต | superscript greek, โ68b is superscript beta (only a few) |
โ7โ | ๐ถ | script, โ7a |
โ8โ | ฮฑ | greek, โ8a is alpha (by sound where possible otherwise letter-shape) |
โ8.โ | ฯ | greek variants, โ8.s is final sigma |
โ9โ | ๐ ๐ ๐ ๐ ๐ ๐ | bold, โ9a โ91 โ95โฃ โ97โฃ โ98โฃ โ90โฃ |
โ95โ | ๐ | bold fraktur, โ95a |
โ97โ | ๐ช | bold script, โ97a |
โ98โ | ๐ | bold greek, โ98a is bold alpha |
โ90โ | ๐ | bold italic, โ90a |
โ908โ | ๐ถ | bold italic greek, โ908a is bold italic alpha |
โ0โ | ๐ | italic, โ0a |
โ08โ | ๐ผ | italic greek, โ08a is italic alpha |
โ-โ | โ แด โฏอ โ | subscripts and small caps, โ-a โ-A โ-88 โ-8โฃ (not all letters, some only approximate) (same key as _ but without shift) |
โ-8โ | แตฆ | subscript greek, โ-8b is subscript beta (only a few) |
โ{โ | ๐บ ๐ฃ ๐ซ | sans-serif, โ{a โ{1 โ{9โฃ |
โ{9โ | ๐ฎ ๐ญ | sans-serif bold, โ{9a โ{91 |
โ}โ | ๐ ๐ท | monospace, โ}a โ}1 |
โ|โ | ๐ ๐ ๐ ๐ | double-struck, โ|a โ|1 โ|8โฃ โ|0โฃ |
โ|8โ | โผ | double-struck greek, โ|8p (only a few) |
โ|0โ | โ โ | double-struck italic, โ|0e โ|i (only a few) |
Power statistics brackets | ||
โโ|| or โ|| | โ | power-norm bracket |
โ|-1 | โโ | 1-norm right bracket |
โ|-2 | โโ | 2-norm right bracket |
โ|-8 | โโฏอ | โ-norm right bracket |
โโ<< | โช | left power-mean bracket |
โโ>> | โซ | right power-mean bracket |
โโ{{ | โง | left power-sum bracket (substitute for ๊จ๊จ when HTML is not available) |
โโ}} | โง | right power-sum bracket (substitute for ๊จ๊จ when HTML is not available) |
Combining marks | ||
โ\- | โฬถ | combining strike-thru |
โ^_ | โฬ | combining overline |
โ__ | โฬฒ | combining low line |
โ-_ or โ_- or โ_^ | โฬฒฬ | combining overline and low line (undirected value) |
Keyboard map
Footnotes
- โ The advanced section also contains conventions collected from other RTT-related articles Dave and Douglas have contributed to but are outside the main guide to RTT series.
- โ For educational purposes, we use the ๐ symbol here to represent the implicit dimensionless unit that the weighting annotation "(C)" is attached to. But this symbol should not be shown in the reduced result. Another way to understand how we arrive at a bare annotation for the units of this quantity is to consider that w = d / |e| whose units are ยข(W) / ยข and the cents cancel.
- โ You may sometimes see annotated units without parentheses, such as "dBA", but this is not compliant with SI standards, so we always keep the parentheses.
- โ Per https://physics.nist.gov/cuu/Units/checklist.html and https://academia.stackexchange.com/questions/54885/should-there-be-a-space-between-a-value-and-the-units-used .
- โ It seems there is no standard symbol for a musical cent, except the word spelled in full (see https://en.wikipedia.org/wiki/Cent_(music)). But it seems unlikely anyone will interpret the cent currency symbol "ยข" following a number in a musical context as anything other than musical cents.
- โ In these tables, "alternative" means any complexity other than the default of log-product complexity, and "alt" stands for its abbreviation.
- โ May be used for a prime-limit or for any prime-only list.