99ed4
Jump to navigation
Jump to search
Prime factorization
32 × 11
Step size
24.2424¢
Octave
50\99ed4 (1212.12¢)
Twelfth
78\99ed4 (1890.91¢) (→26\33ed4)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 97ed4 | 99ed4 | 101ed4 → |
99 equal divisions of the 4th harmonic (abbreviated 99ed4) is a nonoctave tuning system that divides the interval of 4/1 into 99 equal parts of about 24.2 ¢ each. Each step represents a frequency ratio of 41/99, or the 99th root of 4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 24.242 | |
2 | 48.485 | 35/34, 36/35, 37/36, 38/37 |
3 | 72.727 | |
4 | 96.97 | 18/17, 37/35 |
5 | 121.212 | |
6 | 145.455 | 25/23, 37/34 |
7 | 169.697 | |
8 | 193.939 | 19/17 |
9 | 218.182 | 17/15, 42/37 |
10 | 242.424 | |
11 | 266.667 | 7/6 |
12 | 290.909 | 13/11 |
13 | 315.152 | 6/5 |
14 | 339.394 | |
15 | 363.636 | 21/17, 37/30 |
16 | 387.879 | |
17 | 412.121 | |
18 | 436.364 | |
19 | 460.606 | 30/23 |
20 | 484.848 | 41/31 |
21 | 509.091 | |
22 | 533.333 | 34/25 |
23 | 557.576 | 29/21 |
24 | 581.818 | 7/5 |
25 | 606.061 | |
26 | 630.303 | 36/25 |
27 | 654.545 | 19/13 |
28 | 678.788 | 34/23, 37/25 |
29 | 703.03 | |
30 | 727.273 | 35/23, 38/25 |
31 | 751.515 | 17/11 |
32 | 775.758 | 36/23 |
33 | 800 | |
34 | 824.242 | 29/18, 37/23 |
35 | 848.485 | 31/19 |
36 | 872.727 | 43/26 |
37 | 896.97 | 42/25 |
38 | 921.212 | |
39 | 945.455 | 19/11 |
40 | 969.697 | |
41 | 993.939 | |
42 | 1018.182 | |
43 | 1042.424 | 31/17, 42/23 |
44 | 1066.667 | |
45 | 1090.909 | |
46 | 1115.152 | |
47 | 1139.394 | 29/15 |
48 | 1163.636 | |
49 | 1187.879 | |
50 | 1212.121 | |
51 | 1236.364 | |
52 | 1260.606 | |
53 | 1284.848 | |
54 | 1309.091 | |
55 | 1333.333 | 41/19 |
56 | 1357.576 | |
57 | 1381.818 | |
58 | 1406.061 | |
59 | 1430.303 | |
60 | 1454.545 | |
61 | 1478.788 | |
62 | 1503.03 | 31/13 |
63 | 1527.273 | |
64 | 1551.515 | |
65 | 1575.758 | |
66 | 1600 | |
67 | 1624.242 | |
68 | 1648.485 | |
69 | 1672.727 | |
70 | 1696.97 | |
71 | 1721.212 | |
72 | 1745.455 | |
73 | 1769.697 | |
74 | 1793.939 | 31/11 |
75 | 1818.182 | |
76 | 1842.424 | |
77 | 1866.667 | |
78 | 1890.909 | |
79 | 1915.152 | |
80 | 1939.394 | |
81 | 1963.636 | |
82 | 1987.879 | 41/13 |
83 | 2012.121 | |
84 | 2036.364 | |
85 | 2060.606 | 23/7 |
86 | 2084.848 | |
87 | 2109.091 | |
88 | 2133.333 | |
89 | 2157.576 | |
90 | 2181.818 | |
91 | 2206.061 | 25/7 |
92 | 2230.303 | |
93 | 2254.545 | |
94 | 2278.788 | 41/11 |
95 | 2303.03 | |
96 | 2327.273 | 23/6 |
97 | 2351.515 | |
98 | 2375.758 | |
99 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +12.1 | -11.0 | +0.0 | +1.6 | +1.1 | +0.9 | +12.1 | +2.2 | -10.6 | -5.9 | -11.0 |
Relative (%) | +50.0 | -45.6 | +0.0 | +6.5 | +4.4 | +3.6 | +50.0 | +8.9 | -43.5 | -24.2 | -45.6 | |
Steps (reduced) |
50 (50) |
78 (78) |
99 (0) |
115 (16) |
128 (29) |
139 (40) |
149 (50) |
157 (58) |
164 (65) |
171 (72) |
177 (78) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.2 | -11.3 | -9.5 | +0.0 | -8.0 | -10.0 | -6.6 | +1.6 | -10.2 | +6.3 | +2.0 |
Relative (%) | -17.2 | -46.4 | -39.1 | +0.0 | -32.9 | -41.1 | -27.2 | +6.5 | -42.0 | +25.8 | +8.4 | |
Steps (reduced) |
183 (84) |
188 (89) |
193 (94) |
198 (0) |
202 (4) |
206 (8) |
210 (12) |
214 (16) |
217 (19) |
221 (23) |
224 (26) |