97ed9

From Xenharmonic Wiki
Jump to navigation Jump to search
← 95ed9 97ed9 99ed9 →
Prime factorization 97 (prime)
Step size 39.2156 ¢ 
Octave 31\97ed9 (1215.68 ¢)
Twelfth 49\97ed9 (1921.56 ¢)
Consistency limit 2
Distinct consistency limit 2

97 equal divisions of the 9th harmonic (abbreviated 97ed9) is a nonoctave tuning system that divides the interval of 9/1 into 97 equal parts of about 39.2 ¢ each. Each step represents a frequency ratio of 91/97, or the 97th root of 9.

Theory

97ed9 corresponds to 30.6001…edo. Each step of 97ed9 corresponds closely to five steps of 153edo.

97ed9 features a well-balanced harmonic series segment from 4 to 9 and another from 39 to 50 (see table below). It performs well across all prime harmonics from 5 to 19, with the exception of 13, which is slightly flat.

97ed9 sets a height record on the Riemann zeta function with primes 2 and 3 removed, approximating 30.59745…edo. This record remains unbeaten until approximately 41.3478…edo.

Additionally, 97ed9 is close to 125zpi (see Zeta peak index).

Harmonics

Approximation of harmonics in 97ed9
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +15.7 +19.6 -7.9 -2.0 -3.9 +3.7 +7.8 +0.0 +13.7 +5.5 +11.8
Relative (%) +40.0 +50.0 -20.0 -5.1 -10.0 +9.5 +20.0 +0.0 +34.9 +14.1 +30.0
Steps
(reduced)
31
(31)
49
(49)
61
(61)
71
(71)
79
(79)
86
(86)
92
(92)
97
(0)
102
(5)
106
(9)
110
(13)
Approximation of harmonics in 97ed9 (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -9.2 +19.4 +17.6 -15.7 -3.0 +15.7 +0.5 -9.9 -15.9 -18.0 -16.5 -11.8
Relative (%) -23.4 +49.5 +44.9 -40.0 -7.7 +40.0 +1.3 -25.1 -40.5 -45.9 -42.1 -30.0
Steps
(reduced)
113
(16)
117
(20)
120
(23)
122
(25)
125
(28)
128
(31)
130
(33)
132
(35)
134
(37)
136
(39)
138
(41)
140
(43)
Approximation of harmonics in 97ed9 (39–50)
Harmonic 39 40 41 42 43 44 45 46 47 48 49 50
Error Absolute (¢) +10.4 +5.8 +2.3 -0.2 -1.7 -2.3 -2.0 -0.8 +1.1 +3.9 +7.4 +11.7
Relative (%) +26.6 +14.9 +5.8 -0.5 -4.4 -5.9 -5.1 -2.2 +2.9 +10.0 +18.9 +29.7
Steps
(reduced)
162
(65)
163
(66)
164
(67)
165
(68)
166
(69)
167
(70)
168
(71)
169
(72)
170
(73)
171
(74)
172
(75)
173
(76)

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 39.2
2 78.4 22/21
3 117.6 15/14, 31/29
4 156.9
5 196.1
6 235.3 39/34
7 274.5 34/29, 41/35
8 313.7
9 352.9 38/31
10 392.2
11 431.4
12 470.6
13 509.8
14 549
15 588.2
16 627.4
17 666.7 25/17
18 705.9
19 745.1
20 784.3 11/7
21 823.5 37/23
22 862.7
23 902
24 941.2 43/25
25 980.4
26 1019.6
27 1058.8 35/19
28 1098
29 1137.3
30 1176.5
31 1215.7
32 1254.9 31/15
33 1294.1
34 1333.3 41/19
35 1372.5
36 1411.8 43/19
37 1451
38 1490.2 26/11
39 1529.4
40 1568.6
41 1607.8 38/15, 43/17
42 1647.1
43 1686.3
44 1725.5
45 1764.7
46 1803.9
47 1843.1 29/10
48 1882.3
49 1921.6
50 1960.8 31/10
51 2000
52 2039.2
53 2078.4
54 2117.6 17/5
55 2156.9
56 2196.1
57 2235.3
58 2274.5
59 2313.7 19/5
60 2352.9
61 2392.1
62 2431.4
63 2470.6
64 2509.8
65 2549
66 2588.2
67 2627.4
68 2666.7 14/3
69 2705.9
70 2745.1 44/9
71 2784.3 5/1
72 2823.5
73 2862.7
74 2902
75 2941.2
76 2980.4
77 3019.6
78 3058.8 41/7
79 3098
80 3137.2
81 3176.5
82 3215.7
83 3254.9
84 3294.1
85 3333.3
86 3372.5
87 3411.8
88 3451 22/3
89 3490.2 15/2
90 3529.4
91 3568.6
92 3607.8
93 3647
94 3686.3
95 3725.5 43/5
96 3764.7
97 3803.9