953edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 952edt 953edt 954edt →
Prime factorization 953 (prime)
Step size 1.99576¢ 
Octave 601\953edt (1199.45¢)
Consistency limit 2
Distinct consistency limit 2

953 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 953edt or 953ed3), is a nonoctave tuning system that divides the interval of 3/1 into 953 equal parts of about 2⁠ ⁠¢ each. Each step represents a frequency ratio of 31/953, or the 953rd root of 3. It corresponds to 601.27470edo.

Theory

953edt is strong in the 3.5.7.11.13.19.23.29.31 subgroup, tempering out 91125/91091, 60025/60021, 256025/255879, 4125/4123, 9317/9315, 16445/16443, 30625/30613 and 130977/130975. Using the 3.5.7.11.13.19.23 subgroup, it tempers out 110565/110561.

Harmonics

Approximation of harmonics in 953edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -0.551 +0.000 +0.894 -0.239 -0.551 +0.009 +0.343 +0.000 -0.790 -0.146 +0.894
Relative (%) -27.6 +0.0 +44.8 -12.0 -27.6 +0.5 +17.2 +0.0 -39.6 -7.3 +44.8
Steps
(reduced)
601
(601)
953
(0)
1203
(250)
1396
(443)
1554
(601)
1688
(735)
1804
(851)
1906
(0)
1997
(91)
2080
(174)
2156
(250)
Approximation of harmonics in 953edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Error Absolute (¢) +0.028 -0.542 -0.239 -0.208 +0.612 -0.551 -0.353 +0.655 +0.009 -0.697 +0.181 +0.343 -0.478 -0.523 +0.000
Relative (%) +1.4 -27.1 -12.0 -10.4 +30.6 -27.6 -17.7 +32.8 +0.5 -34.9 +9.1 +17.2 -24.0 -26.2 +0.0
Steps
(reduced)
2225
(319)
2289
(383)
2349
(443)
2405
(499)
2458
(552)
2507
(601)
2554
(648)
2599
(693)
2641
(735)
2681
(775)
2720
(814)
2757
(851)
2792
(886)
2826
(920)
2859
(0)