91ed4
Jump to navigation
Jump to search
Prime factorization
7 × 13
Step size
26.3736¢
Octave
46\91ed4 (1213.19¢)
Twelfth
72\91ed4 (1898.9¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 89ed4 | 91ed4 | 93ed4 → |
91 equal divisions of the 4th harmonic (abbreviated 91ed4) is a nonoctave tuning system that divides the interval of 4/1 into 91 equal parts of about 26.4 ¢ each. Each step represents a frequency ratio of 41/91, or the 91st root of 4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 26.374 | |
2 | 52.747 | 35/34 |
3 | 79.121 | 22/21, 23/22 |
4 | 105.495 | 33/31 |
5 | 131.868 | 41/38 |
6 | 158.242 | 23/21 |
7 | 184.615 | |
8 | 210.989 | 26/23 |
9 | 237.363 | 31/27 |
10 | 263.736 | |
11 | 290.11 | 13/11 |
12 | 316.484 | 6/5 |
13 | 342.857 | |
14 | 369.231 | 26/21 |
15 | 395.604 | 39/31 |
16 | 421.978 | 23/18, 37/29 |
17 | 448.352 | 22/17 |
18 | 474.725 | |
19 | 501.099 | |
20 | 527.473 | |
21 | 553.846 | |
22 | 580.22 | 7/5 |
23 | 606.593 | 27/19 |
24 | 632.967 | 36/25 |
25 | 659.341 | 19/13 |
26 | 685.714 | |
27 | 712.088 | |
28 | 738.462 | 23/15 |
29 | 764.835 | |
30 | 791.209 | 41/26 |
31 | 817.582 | |
32 | 843.956 | |
33 | 870.33 | 38/23 |
34 | 896.703 | 42/25 |
35 | 923.077 | 29/17 |
36 | 949.451 | |
37 | 975.824 | |
38 | 1002.198 | 25/14, 41/23 |
39 | 1028.571 | 38/21 |
40 | 1054.945 | |
41 | 1081.319 | |
42 | 1107.692 | |
43 | 1134.066 | |
44 | 1160.44 | 41/21 |
45 | 1186.813 | |
46 | 1213.187 | |
47 | 1239.56 | |
48 | 1265.934 | 27/13 |
49 | 1292.308 | 19/9 |
50 | 1318.681 | 15/7 |
51 | 1345.055 | 37/17 |
52 | 1371.429 | |
53 | 1397.802 | |
54 | 1424.176 | 41/18 |
55 | 1450.549 | |
56 | 1476.923 | |
57 | 1503.297 | 31/13 |
58 | 1529.67 | |
59 | 1556.044 | 27/11 |
60 | 1582.418 | |
61 | 1608.791 | 38/15 |
62 | 1635.165 | 18/7 |
63 | 1661.538 | |
64 | 1687.912 | |
65 | 1714.286 | |
66 | 1740.659 | 41/15 |
67 | 1767.033 | |
68 | 1793.407 | 31/11 |
69 | 1819.78 | |
70 | 1846.154 | |
71 | 1872.527 | |
72 | 1898.901 | |
73 | 1925.275 | |
74 | 1951.648 | |
75 | 1978.022 | |
76 | 2004.396 | |
77 | 2030.769 | |
78 | 2057.143 | 23/7 |
79 | 2083.516 | |
80 | 2109.89 | |
81 | 2136.264 | |
82 | 2162.637 | |
83 | 2189.011 | 39/11 |
84 | 2215.385 | 18/5 |
85 | 2241.758 | |
86 | 2268.132 | |
87 | 2294.505 | |
88 | 2320.879 | |
89 | 2347.253 | |
90 | 2373.626 | |
91 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +13.2 | -3.1 | +0.0 | +9.3 | +10.1 | +7.0 | +13.2 | -6.1 | -3.9 | -10.7 | -3.1 |
Relative (%) | +50.0 | -11.6 | +0.0 | +35.2 | +38.4 | +26.5 | +50.0 | -23.2 | -14.8 | -40.4 | -11.6 | |
Steps (reduced) |
46 (46) |
72 (72) |
91 (0) |
106 (15) |
118 (27) |
128 (37) |
137 (46) |
144 (53) |
151 (60) |
157 (66) |
163 (72) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.8 | -6.2 | +6.2 | +0.0 | +0.5 | +7.1 | -7.4 | +9.3 | +3.9 | +2.5 | +4.7 |
Relative (%) | -37.0 | -23.5 | +23.6 | +0.0 | +2.0 | +26.8 | -28.1 | +35.2 | +15.0 | +9.6 | +17.8 | |
Steps (reduced) |
168 (77) |
173 (82) |
178 (87) |
182 (0) |
186 (4) |
190 (8) |
193 (11) |
197 (15) |
200 (18) |
203 (21) |
206 (24) |