91ed4
Jump to navigation
Jump to search
Prime factorization
7 × 13
Step size
26.3736¢
Octave
46\91ed4 (1213.19¢)
Twelfth
72\91ed4 (1898.9¢)
Consistency limit
1
Distinct consistency limit
1
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 89ed4 | 91ed4 | 93ed4 → |
91 equal divisions of the 4th harmonic (abbreviated 91ed4) is a nonoctave tuning system that divides the interval of 4/1 into 91 equal parts of about 26.4 ¢ each. Each step represents a frequency ratio of 41/91, or the 91st root of 4.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 26.4 | |
2 | 52.7 | 35/34 |
3 | 79.1 | 22/21, 23/22 |
4 | 105.5 | 33/31 |
5 | 131.9 | 41/38 |
6 | 158.2 | 23/21 |
7 | 184.6 | |
8 | 211 | 26/23 |
9 | 237.4 | 31/27 |
10 | 263.7 | |
11 | 290.1 | 13/11 |
12 | 316.5 | 6/5 |
13 | 342.9 | |
14 | 369.2 | 26/21 |
15 | 395.6 | 39/31 |
16 | 422 | 23/18, 37/29 |
17 | 448.4 | 22/17 |
18 | 474.7 | |
19 | 501.1 | |
20 | 527.5 | |
21 | 553.8 | |
22 | 580.2 | 7/5 |
23 | 606.6 | 27/19 |
24 | 633 | 36/25 |
25 | 659.3 | 19/13 |
26 | 685.7 | |
27 | 712.1 | |
28 | 738.5 | 23/15 |
29 | 764.8 | |
30 | 791.2 | 41/26 |
31 | 817.6 | |
32 | 844 | |
33 | 870.3 | 38/23 |
34 | 896.7 | 42/25 |
35 | 923.1 | 29/17 |
36 | 949.5 | |
37 | 975.8 | |
38 | 1002.2 | 25/14, 41/23 |
39 | 1028.6 | 38/21 |
40 | 1054.9 | |
41 | 1081.3 | |
42 | 1107.7 | |
43 | 1134.1 | |
44 | 1160.4 | 41/21 |
45 | 1186.8 | |
46 | 1213.2 | |
47 | 1239.6 | |
48 | 1265.9 | 27/13 |
49 | 1292.3 | 19/9 |
50 | 1318.7 | 15/7 |
51 | 1345.1 | 37/17 |
52 | 1371.4 | |
53 | 1397.8 | |
54 | 1424.2 | 41/18 |
55 | 1450.5 | |
56 | 1476.9 | |
57 | 1503.3 | 31/13 |
58 | 1529.7 | |
59 | 1556 | 27/11 |
60 | 1582.4 | |
61 | 1608.8 | 38/15 |
62 | 1635.2 | 18/7 |
63 | 1661.5 | |
64 | 1687.9 | |
65 | 1714.3 | |
66 | 1740.7 | 41/15 |
67 | 1767 | |
68 | 1793.4 | 31/11 |
69 | 1819.8 | |
70 | 1846.2 | |
71 | 1872.5 | |
72 | 1898.9 | |
73 | 1925.3 | |
74 | 1951.6 | |
75 | 1978 | |
76 | 2004.4 | |
77 | 2030.8 | |
78 | 2057.1 | 23/7 |
79 | 2083.5 | |
80 | 2109.9 | |
81 | 2136.3 | |
82 | 2162.6 | |
83 | 2189 | 39/11 |
84 | 2215.4 | 18/5 |
85 | 2241.8 | |
86 | 2268.1 | |
87 | 2294.5 | |
88 | 2320.9 | |
89 | 2347.3 | |
90 | 2373.6 | |
91 | 2400 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +13.2 | -3.1 | +0.0 | +9.3 | +10.1 | +7.0 | +13.2 | -6.1 | -3.9 | -10.7 | -3.1 |
Relative (%) | +50.0 | -11.6 | +0.0 | +35.2 | +38.4 | +26.5 | +50.0 | -23.2 | -14.8 | -40.4 | -11.6 | |
Steps (reduced) |
46 (46) |
72 (72) |
91 (0) |
106 (15) |
118 (27) |
128 (37) |
137 (46) |
144 (53) |
151 (60) |
157 (66) |
163 (72) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.8 | -6.2 | +6.2 | +0.0 | +0.5 | +7.1 | -7.4 | +9.3 | +3.9 | +2.5 | +4.7 |
Relative (%) | -37.0 | -23.5 | +23.6 | +0.0 | +2.0 | +26.8 | -28.1 | +35.2 | +15.0 | +9.6 | +17.8 | |
Steps (reduced) |
168 (77) |
173 (82) |
178 (87) |
182 (0) |
186 (4) |
190 (8) |
193 (11) |
197 (15) |
200 (18) |
203 (21) |
206 (24) |