9平均律

From Xenharmonic Wiki
Jump to: navigation, search

9 平均律音階は、オクターブを 9 つに均等分割したものであり、最小の音程は正確に133+1/3cent である。この音程は、7 リミット(7-limit)音程の一部をほとんど正確に表現する、という奇妙な特徴を持つ。9 平均律の 7 リミットからみた見解は、以下のようになる。

1: 27/25 133.238 large limma, BP small semitone

2: 7/6 266.871 septimal minor third

3: 63/50 400.108 quasi-equal major third

4: 49/36 533.742 Arabic lute acute fourth

5: 72/49 666.258 Arabic lute grave fifth

6: 100/63 799.892 quasi-equal minor sixth

7: 12/7 933.129 septimal major sixth

8: 50/27 1066.762 grave major seventh

9: 2/1 1200.000 octave

これらの音程は“7 平均律の音程と近似値”でまとめている。ここの特性評価は、Scalaから得たものである。Scala はまた、音階そのものが、「Pelog Nawanada: Sunda」(1 1 1 1 1 1 1 1 1、huygens-fokker, List of musical modes)であると述べている。それゆえ 1/1 – 7/6 – 49/36 – 12/7 といったコードなどは、9 平均律にとって自然的である。上記の音階は純正音程の子グループ2.27/25.7/3 を生成し、9 平均律と密接な関係がある。

9 平均律はペンタトニック MOS scale(Large と Small の 2 つの音程を積み重ねることで成る音階で、period とよばれる音程幅、通常は 2 を形成する音階)―2L 3s(1 3 1 3 1,Large scale step size and small)を含む。7 音音階の拡大された—2L 5s(1 1 2 1 1 2 1, ときどきそれは「mavila」や「antidiatonic」と呼ばれる)とともに。インドネシアの「pelog scales」(ガムラン音楽の音階の 1 つ)は時々、類似した状況で 7 音スーパーセットの 5 音サブセットを使用する。そしてそれは 9 平均律の伝統から、インドネシアのガムラン音楽が生じることを意味するのである。

9 平均律の音程と近似値

「The “neighborhood” of JI」の一覧はこちら(huygens-fokker)を参照のこと。このリストは原文で紹介されている音程をまとめたものである。紹介されているものは主に、特徴的な音程と近似純正音程である。近似純正音程は各パラメータの数を上げればほぼ無限に生成される。その点原文の近似純正音程は適度に各パラメータが下げられているため、まとめることには大きな意義があると考えられる。

EDO interval cent DMS The "neighborhood" of JI Japanese name ratio diff cent cent diff DMS DMS
9 0 0.00 0.00
1 133.33 40.00 major diatonic semitone ダイアトニックの長2度 15/14 13.89 119.44 4.17 35.83
1 133.33 40.00 2/3-tone 2/3全音 14/13 5.04 128.30 1.51 38.49
1 133.33 40.00 large limma, BP small semitone 大きいリンマ、ボーレン・ピアスの小さい半音 27/25 0.10 133.24 0.03 39.97
1 133.33 40.00 tridecimal 2/3-tone 13リミットの2/3音 13/12 -5.24 138.57 -1.57 41.57
1 133.33 40.00 3/4-tone, undecimal neutral second 3/4全音、11リミットの中立的な2度 12/11 -17.30 150.64 -5.19 45.19
1 133.33 40.00 4/5-tone, Ptolemy's second 4/5全音、プトレマイオスの2度 11/10 -31.67 165.00 -9.50 49.50
2 266.67 80.00 tridecimal 5/4-tone 13リミットの5/4全音 15/13 18.93 247.74 5.68 74.32
2 266.67 80.00 septimal minor third 7リミットの短3度 7/6 -0.20 266.87 -0.06 80.06
2 266.67 80.00 tridecimal minor third 13リミットの短3度 13/11 -22.54 289.21 -6.76 86.76
3 400.00 120.00 major third 長3度 5/4 13.69 386.31 4.11 115.89
3 400.00 120.00 quasi-equal major third 擬似平均律長3度 63/50 -0.11 400.11 -0.03 120.03
3 400.00 120.00 undecimal diminished fourth or major third 11リミットの減4度または長3度 14/11 -17.51 417.51 -5.25 125.25
4 533.33 160.00 Arabic lute acute fourth アラブリュートの鋭い4度 49/36 -0.41 533.74 -0.12 160.12
4 533.33 160.00 undecimal augmented fourth 11リミットの増4度 15/11 -3.62 536.95 -1.09 161.09
4 533.33 160.00 undecimal semi-augmented fourth 11リミットの準増5度 11/8 -17.98 551.32 -5.40 165.40
5 666.67 200.00 tridecimal diminished fifth 13リミットの減5度 13/9 30.05 636.62 9.01 190.99
5 666.67 200.00 undecimal semi-diminished fifth 11リミットの準減5度 16/11 17.98 648.68 5.40 194.60
5 666.67 200.00 Arabic lute grave fifth アラブリュートの威厳ある5度 72/49 0.41 666.26 0.12 199.88
6 800.00 240.00 undecimal augmented fifth 11リミットの増5度 11/7 17.51 782.49 5.25 234.75
6 800.00 240.00 quasi-equal minor sixth 擬似平均律短6度 100/63 0.11 799.89 0.03 239.97
6 800.00 240.00 minor sixth 短6度 8/5 -13.69 813.69 -4.11 244.11
7 933.33 280.00 septimal major sixth 7リミットの長6度 12/7 0.20 933.13 0.06 279.94
8 1066.67 320.00 21/4-tone, undecimal neutral seventh 21/4全音、11リミットの中立7度 11/6 17.30 1049.36 5.19 314.81
8 1066.67 320.00 grave major seventh 威厳ある長7度 50/27 -0.10 1066.76 -0.03 320.03
8 1066.67 320.00 16/3-tone 16/3全音 13/7 -5.04 1071.70 -1.51 321.51
9 1200.00 360.00

イメージ

9edo wheel.png

コンマをなだらかにする

9 平均律を< 9 14 21 25 31 33 |ヴァルとみなした時、次のリストのコンマをテンパーアウトする。

Comma Monzo Value (Cents) Name 1 Name 2 Name 3
135/128 | -7 3 1 > 92.18 Major Chroma Major Limma Pelogic Comma
16875/16384 | -14 3 4 > 51.12 Negri Comma Double Augmentation Diesis
128/125 | 7 0 -3 > 41.06 Diesis Augmented Comma
2109375/2097152 | -21 3 7 > 10.06 Semicomma Fokker Comma
36/35 | 2 2 -1 -1 > 48.77 Septimal Quarter Tone
525/512 | -9 1 2 1 > 43.41 Avicennma Avicenna's Enharmonic Diesis
49/48 | -4 -1 0 2 > 35.70 Slendro Diesis
686/675 | 1 -3 -2 3 > 27.99 Senga
2430/2401 | 1 5 1 -4 > 20.79 Nuwell
1728/1715 | 6 3 -1 -3 > 13.07 Orwellisma Orwell Comma
225/224 | -5 2 2 -1 > 7.71 Septimal Kleisma Marvel Comma
6144/6125 | 11 1 -3 -2 > 5.36 Porwell
65625/65536 | -16 1 5 1 > 2.35 Horwell
99/98 | -1 2 0 -2 1 > 17.58 Mothwellsma
121/120 | -3 -1 -1 0 2 > 14.37 Biyatisma
176/175 | 4 0 -2 -1 1 > 9.86 Valinorsma
385/384 | -7 -1 1 1 1 > 4.50 Keenanisma
540/539 | 2 3 1 -2 -1 > 3.21 Swetisma
91/90 | -1 -2 -1 1 0 1 > 19.13 Superleap
676/675 | 2 -3 -2 0 0 2 > 2.56 Parizeksma