618edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 617edo618edo619edo →
Prime factorization 2 × 3 × 103
Step size 1.94175¢
Fifth 362\618 (702.913¢) (→181\309)
Semitones (A1:m2) 62:44 (120.4¢ : 85.44¢)
Dual sharp fifth 362\618 (702.913¢) (→181\309)
Dual flat fifth 361\618 (700.971¢)
Dual major 2nd 105\618 (203.883¢) (→35\206)
Consistency limit 7
Distinct consistency limit 7

618 equal divisions of the octave (618edo), or 618-tone equal temperament (618tet), 618 equal temperament (618et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 618 equal parts of about 1.94 ¢ each.

Theory

As every other step of 1236edo, 618edo is excellent in the 2.9.5.7.11.13.17 subgroup, where it notably tempers out 2601/2600, 4096/4095, 5832/5831, 6656/6655, 9801/9800, and 10648/10647. With a reasonable approximation of 19, it further tempers out 2926/2925, 5985/5984, and 6175/6174.

Odd harmonics

Approximation of odd harmonics in 618edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) +0.958 +0.094 +0.106 -0.027 +0.138 +0.249 -0.890 -0.101 -0.426 -0.878 +0.852
relative (%) +49 +5 +5 -1 +7 +13 -46 -5 -22 -45 +44
Steps
(reduced)
980
(362)
1435
(199)
1735
(499)
1959
(105)
2138
(284)
2287
(433)
2414
(560)
2526
(54)
2625
(153)
2714
(242)
2796
(324)