613edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 612edt 613edt 614edt →
Prime factorization 613 (prime)
Step size 3.1027¢ 
Octave 387\613edt (1200.74¢)
Consistency limit 4
Distinct consistency limit 4

613 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 613edt or 613ed3), is a nonoctave tuning system that divides the interval of 3/1 into 613 equal parts of about 3.1⁠ ⁠¢ each. Each step represents a frequency ratio of 31/613, or the 613th root of 3. It corresponds to 386.75994edo.

Theory

613edt is strong in the 3.5.11.13.17.19.29.31 subgroup, tempering out 6175/6171, 27625/27621, 2873/2871, 9375/9367, 26195/26163, 767637/767125 and 265837/265625. Using the 3.5.7.11.13.17.19 subgroup, it tempers out 121125/121121.

Harmonics

Approximation of harmonics in 613edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.74 +0.00 +1.49 -0.09 +0.74 +0.71 -0.87 +0.00 +0.66 +0.09 +1.49
Relative (%) +24.0 +0.0 +48.0 -2.9 +24.0 +22.8 -28.0 +0.0 +21.1 +3.0 +48.0
Steps
(reduced)
387
(387)
613
(0)
774
(161)
898
(285)
1000
(387)
1086
(473)
1160
(547)
1226
(0)
1285
(59)
1338
(112)
1387
(161)
Approximation of harmonics in 613edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Error Absolute (¢) -0.56 +1.45 -0.09 -0.12 +0.41 +0.74 +0.22 +1.40 +0.71 +0.84 +1.45 -0.87 -0.18 +0.18 +0.00
Relative (%) -18.2 +46.8 -2.9 -4.0 +13.3 +24.0 +7.2 +45.1 +22.8 +27.0 +46.7 -28.0 -5.8 +5.8 +0.0
Steps
(reduced)
1431
(205)
1473
(247)
1511
(285)
1547
(321)
1581
(355)
1613
(387)
1643
(417)
1672
(446)
1699
(473)
1725
(499)
1750
(524)
1773
(547)
1796
(570)
1818
(592)
1839
(0)