4096edo
Jump to navigation
Jump to search
Prime factorization
212
Step size
0.292969¢
Fifth
2396\4096 (701.953¢) (→599\1024)
Semitones (A1:m2)
388:308 (113.7¢ : 90.23¢)
Consistency limit
15
Distinct consistency limit
15
← 4095edo | 4096edo | 4097edo → |
4096 equal divisions of the octave (4096edo), or 4096-tone equal temperament (4096tet), 4096 equal temperament (4096et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 4096 equal parts of about 0.293 ¢ each.
Theory
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.000 | -0.002 | +0.112 | +0.022 | +0.049 | -0.000 | -0.073 | +0.143 | +0.144 | -0.085 | -0.114 |
relative (%) | +0 | -1 | +38 | +7 | +17 | -0 | -25 | +49 | +49 | -29 | -39 | |
Steps (reduced) |
4096 (0) |
6492 (2396) |
9511 (1319) |
11499 (3307) |
14170 (1882) |
15157 (2869) |
16742 (358) |
17400 (1016) |
18529 (2145) |
19898 (3514) |
20292 (3908) |
This is the 12th power of two EDO, and it is consistent in the 15-odd-limit, a first for a power of two EDO.