4096edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 4095edo4096edo4097edo →
Prime factorization 212
Step size 0.292969¢
Fifth 2396\4096 (701.953¢) (→599\1024)
Semitones (A1:m2) 388:308 (113.7¢ : 90.23¢)
Consistency limit 15
Distinct consistency limit 15

4096 equal divisions of the octave (4096edo), or 4096-tone equal temperament (4096tet), 4096 equal temperament (4096et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 4096 equal parts of about 0.293 ¢ each.

Theory

Approximation of prime harmonics in 4096edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.000 -0.002 +0.112 +0.022 +0.049 -0.000 -0.073 +0.143 +0.144 -0.085 -0.114
relative (%) +0 -1 +38 +7 +17 -0 -25 +49 +49 -29 -39
Steps
(reduced)
4096
(0)
6492
(2396)
9511
(1319)
11499
(3307)
14170
(1882)
15157
(2869)
16742
(358)
17400
(1016)
18529
(2145)
19898
(3514)
20292
(3908)

This is the 12th power of two EDO, and it is consistent in the 15-odd-limit, a first for a power of two EDO.