38ed7/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 37ed7/4 38ed7/4 39ed7/4 →
Prime factorization 2 × 19
Step size 25.4954¢ 
Octave 47\38ed7/4 (1198.28¢)
Twelfth 75\38ed7/4 (1912.16¢)
Consistency limit 3
Distinct consistency limit 3

38 equal divisions of 7/4 (abbreviated 38ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 38 equal parts of about 25.5⁠ ⁠¢ each. Each step represents a frequency ratio of (7/4)1/38, or the 38th root of 7/4.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 25.5
2 51
3 76.5 22/21, 23/22, 24/23
4 102 17/16
5 127.5 14/13
6 153 12/11, 23/21
7 178.5 21/19
8 204
9 229.5 8/7
10 255 15/13, 22/19
11 280.4 20/17
12 305.9
13 331.4 17/14, 23/19, 29/24
14 356.9 16/13
15 382.4 5/4
16 407.9 19/15, 24/19, 29/23
17 433.4
18 458.9 13/10, 17/13
19 484.4 29/22
20 509.9
21 535.4 15/11, 19/14, 26/19
22 560.9 29/21
23 586.4 7/5
24 611.9 10/7
25 637.4
26 662.9 19/13, 22/15, 25/17
27 688.4
28 713.9
29 739.4 20/13, 23/15, 26/17, 29/19
30 764.9
31 790.4 19/12
32 815.9 8/5
33 841.3 13/8
34 866.8 23/14, 28/17
35 892.3
36 917.8 17/10, 22/13
37 943.3 19/11
38 968.8 7/4

Harmonics

Approximation of harmonics in 38ed7/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -1.7 +10.2 -3.4 -7.3 +8.5 -3.4 -5.1 -5.1 -9.0 +4.4 +6.8
Relative (%) -6.7 +40.0 -13.5 -28.7 +33.3 -13.5 -20.2 -20.0 -35.4 +17.4 +26.6
Steps
(reduced)
47
(9)
75
(37)
94
(18)
109
(33)
122
(8)
132
(18)
141
(27)
149
(35)
156
(4)
163
(11)
169
(17)
Approximation of harmonics in 38ed7/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -4.3 -5.1 +2.9 -6.9 -9.8 -6.8 +1.6 -10.7 +6.8 +2.7 +2.2
Relative (%) -17.0 -20.2 +11.3 -26.9 -38.6 -26.7 +6.2 -42.1 +26.6 +10.7 +8.8
Steps
(reduced)
174
(22)
179
(27)
184
(32)
188
(36)
192
(2)
196
(6)
200
(10)
203
(13)
207
(17)
210
(20)
213
(23)